-R186 928 AUTOMATED ROUTE FINDER FOR MULTIPLE TAMK COLUMNSCU)
ARMY ENGINEER TOPOGRAPHIC LABS FORT BEEVOIR VA
J R BENTON SEP 87 ETL-0480

UNCLARSSIFIED

==
N
@

=
22

s
22
e

¢

g

¢ '*:
b6

Ii2s s pie

o
B

A ol o o
oo
i

F. =
w
fod

|
‘:-
c

44 &
o

K .-.';'. Pal)
SO

MICROCOPY WtSOLUYl(\N TEST CHART
NATLNE B REAE Lo A W

- -
s
‘I P 4 .'..."J

<
-,

PR

l. “ ’. " "
A

4

o/

B AN,
-
A

e il
’Q“v
e
DREM IR

b

og © o o L o ® o o . . o @ @ ®
PV T A TR A S R EARE RSN A ; R R : Y,
NN LRG 3 ./ o T I Ay w r-r "-\._ “""9 QAtYy *~ Gy
S P PLET R AR TAL, ¢ +, S WS\ -" \~ o

: ALRSNIRRINYS ‘.“"‘.J‘ {‘:ﬁh s o v"‘ NI -‘ e .

‘. . NN A ‘M:' AT .
’ Q l) b
U """"“"'“' A ‘.‘0"'“"."'»“ T .’u'.'.‘ 'c LU AR .‘~"'|"‘- .'o.o. ittt WVl

NN TN RN Tea e uee

AR B " R LA P L] " - - . - e
Lo Py P W AL PP P PPy T P
. > . ! p.n.!'_ N ‘,‘ 5"%

xxxxxx

ETL-0480 -
JT EILL DOy

AD-A186 920

Automated route finder for
multiple tank columns

John R. Benton

September 1987

wiic

ELECTE
DEC 1 6 W87

A
E

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION IS UNLIMITED

UA’S. ARIVIY CORPS OF ENGINEERS
ENGINEER TOPOGRAPHIC LABORATORIES
FORT BELVOIR, VIRGINIA 22060-5546

R OT 0 Ut (N Tlie RN PRI A Oy s
A P DY BN T (0 o (AN

tesrroy rthis report when no lon
Toonst return (€ to the ariginag
The findi{ngs {n this report are

(,‘f

Aacthorfzed docaument s .

Derartment the Armvy postition

The ct1tat{on {n this res oo of
proda s does not metitate of
use of such praodu 5.

Oyt

:‘L‘ﬂ’ WY l. c")

',".3.f"i.o,"-¢:2."= DN
PIACTE N A

ger needed

tor.

nat to be ¢onstrued as an offictal
unless 80 designated bv other

trade names 0f Commercially available

tio1al en‘orsement or approval of the

Wit TRt R T Y s
SOOI SRR O

- =
PR R R T R)

g "
'S - TA

- Y

Ehvie, »

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ETL-0480

6a NAME OF PERFORMING ORGANIZATION
U.S. Army Engineer

Topographic Laboratories

6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6¢ ADDRESS (City, State, and ZIP Code)

Fort Belvoir, VA 22060-5546

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING

ORGANIZATION (If

8b. OFFICE SYMBOL

applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢ ADORESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO. ACCESSION NO
61101 A91 D 01

11 TITLE (Include Security Classification)

Automated Route Finder for Multiple Tank Columns

12 PERSONAL AUTHOR(S
®) John R. Benton

13a. TYPE OF REPORT 13b TIME COVERED

14 DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT

Technical FROM 70 — September 1687
16 SUPPLEMENTARY NOTATION
17 COSAT! CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

corresponding to the arc.

the graph as it is explored.

outlined.

Future

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The Automated Route Finder for Multiple Tank Columns computes multiple
non-competing paths for columns of tanks.

represented by a graph-theoretic structure.
associated cost which represents the time required to traverse the path

A best-first algorithm is used to search the graph
in order to find the specified number of optrimum paths.

implemented on the Symbolics T.ISP Machine with a color monitor used to display

Sample outputs of route finding are included
with an analvsis of the results.

The network of available paths is
Each arc of the graph has an

The algorithm was

enhancepents for the svstem are

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
R UNCLASSIFIED/UNLIMITED (] SAME AS RPT

[orTic useERrs

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSTFIED

22a NAME OF RESPONSIBLE INDIVIDUAL
E. James Bouoks

22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

202 355-3039

L1l -IM-T

DD FORM 1473, 8aMaR

[Pl SR Pk Y S S L A S R
o’ "‘. -('.'l.‘l._l_‘.r.-f“f Ly

>

S lu O L,

83 APR edition may be used until exhausted
All other edit'ons are obsolete

et -):__'.,.-{.-(] _.~“"- TS .'..cﬁ.v-' L i
I BT A SRR N N TR

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

N A A
;e .I‘l\

X i~ . s

S W

il

'\‘Y'
DEA?
PRl

“l l‘

h I

v o ‘."‘.‘f._‘. "
L&

R
A.l.l.l’

o~

AR A
XN ARy

e
NI

;

“.“- 5 Y
fat
MORTREEE N

;.:_'.

L LD P
rrPS
fﬁ’& ."." “ieh SR By 4y

"." ‘
LWl \f\‘-]

', LA S
"f‘v’r‘f‘)

.

PREFACE

This study was conducted under DA project 4A161101A91D, work unit 01, “Automated
Route Finder for Multiple Tank Columns.”

The work was done during fiscal year 1985 under the supervision of Anne Werkheiser,
Team Leader, Center for Artificial Intelligence, and Robert D. Leighty, Director, Research Institute.

Col Alan L. Laubscher, CE is Commander and Director, and Mr. Walter E. Boge is Techn-
ical Director of the U.S. Army Engineer Topographic Laboratories during the report preparation.

.'. o ‘v m
e
g
:; " TABLE OF CONTENTS
%)
-:{‘ I INTRODUCTION ..ottt 3
N‘
¢
K I AN ALY SIS e 4
;\:‘ A. Multiple Route Finder Programccccoooiiiiiniiiiniiini i, 6
N : .
et B. Graph Generation Using Mouseccocooiiiiiii 11
it,. »
! ‘) C. Line and Curve Drawing FURCLIONSoocooviiiiiiieiiiieiic e 12
Q.‘;‘.
:'!" D. Screen Control FUNCLIONS ..oooovoiiiiiiiiiiie e 12
R%
‘:o.;: E. Special Macrosoocoooooiiiiii 12
L0
I CURRENT STATUS Lo et 14
O
N e Iv. FUTURE ENHANCEMENTS ... it 19
g
0, V. REFERENCES .. oo 20
Pl
0 VIL APPENDIXES ... ooiioiiiiiieit et 21
ald
S
;',-': A. Multiple Route Finder Programccccccoiivoiiiiiiniee 22
:;,j:: B. Graph Generation Using Mouseccooiiiiii 35
‘ y C. Screen Control Functionsoooiiii 39
" D. Line- and Curve-Drawing Functionsccccooiiiiiniiiiii 44
} K E. Special Macrosoccooiiiieiiiiiiie e 47
J
- . F. Discussion of Avenues of Approach and Obstacles 49
0% A
o | Accession For
N - NTIS GRA&I
Y DTIC TAB
" ! Unannounced 0
Sl i
o) ! Justification |
3 =
ot By
o _Distribution/
- @ “ | Availability Codes
.- ! |Avall and/or
re Dt |
::? ; st Special ‘, N |
L35 , P ‘ '\
] ' VP / ‘
23 A-l - i
: ;
¢ ' ‘
87 12 14 071
'.‘_p‘ }-_, et N > .- - - \.): L ".‘\ . '-'\!-\ \.;. = _~..’ N ;.’_ .\.-_:;. N S A Y ~.. B -_}._*, S, A A G : NG
T ' o .‘ ..4 . " Pr A8 v " %) “’ s a2 NI TR T Rt h et

R
o

:& LIST OF ILLUSTRATIONS
l
D
:o‘ Figure 1. Examples of line-thinning algorithm used to generate stick figures 5
K)
i Figure 2. (a) Graph representation of routes and (b) Corresponding coincidence matrix 8
.1:: Figure 3. Search tree with start node of 1 and goal node of 5 for graph of Figure 2 9
::‘ Figure 4. List of global variables used in multiple route findercccccoooiiiiiiiiiinnn. 10
-

. Figure 5. Flow chart of principal functions in the multiple route finder program 11
,‘ Figure 6 Sample output of multiple route finder program 15
.
g

4

-

4

w
1y’

——

SO O

]

T
ST A N

"

LY
-

el JAN NN .llj“l,.l‘".

.~{.'-

g 2

>
Ry ¥
Mg

'i

e

o
Y

e ,

VNS) A VLS ey ' RO TN R R I '5}\’\'-."5 ~ '."‘\J_-.._f.‘ PR “.f".f":_‘.'_'l PRSI RT IS S

L N D e YA A S o L AR T s o o L i e .x.‘f._’ff'i ety

i)
L5
:‘::f::
“0:: I. INTRODUCTION
"0":" Anyone who has struggled to find the most direct a route between two locations on a city
"‘.’t: map where there is no single road or even just two or three roads directly connecting the two
:0‘0:1 locations is familiar with the general problem of planuing an optimum path through a compli-
O cated tangle of roads. In planning a route through a city one must consider not only distance
) but also the number of traffic lights and quantity of traffic at a given time of day. A battlefield
'!' X commander may not have to worry about traffic lights when planning a route, but he must con-
e sider positions of enemy and friendly forces, lines of sight from enemy observation points. avai-
A.'*-:; lability of places of concealment from aerial observation, choke points where his forces
\3':4: could be ambushed. and weather conditions that could affect the mobility of his vehicles.
:!._. Currently, there is no capability of automated route finding available for operational use
D) in the Army. Such a capability would be particularly useful in situations that require o rapid reac-
'.: tion to counter an enemy threat or changing conditions. One example of an Army application
T where this capability would be valuable is the requirement that a friendly forces commander be
:'_\ able to predict the enemy’s shjective and the routes the enemy will use to advance toward their
:. objective. Military doctrine often calls for offensive forces to advance in three separate columns.
2N The defending forces must use their knowledge of the doctrine and tacties of the opposing force as
well as knowledge of the terrain to anticipate and possibly to counteract the movement of their
X Y enemy. The entire Intelligence Preparation of the Battlefield (1PB) process is now done manually.
. e and depending on the size of the area, requires as much as two or three months to complete. In
0 j:?(order to have the capability to develop an IPB in response to enemy actions it will be necessary to
S

automate most of the required effort. One of the tasks that could be performed by the computer
system would be to predict enemy movements. As mentioned above. frequently the military plans
will involve three separate columns. The computer should therefore compute three optimum non-
competing paths as well as suboptimum alternatives. The three routes must be noncompetitive
(i.e. have no road segments in common) since traffic jams would be engendered if two separate
columns had to share the same road.

-

oK,

2f

a s %
e
54 sl

.
p]

To address these problems, a project was initiated to develop a system capable of
automatically generating optimized routes for multiple tank columns. Input to the current
program 1s a graph-theoretic representation of the road network. A pictorial representation is
displayed on a television monitor. Optitnum paths are computed by using the required traver-
sal time for a road as the cost of traversing the road. As the paths are computed they are
displayed as a color overlay on the monitor and also are printed as an ordered list of graph
nodes.

0

w

r]
-
-

-t
b2

%

LM

2
%l
.P

N

<ol

e A .'(-_'.

N P PR L

RO - SO

e

RO KA T

ek

v
LA
® .

'y
¥

»

N e

-
Wt

a e

Bt
LR

v

¥

2

P
1]

B 'Y, lll) l, ll"' -1.‘ .'.r‘ '.".".‘ '.".' "

[R

LShhh

- -
“Lsw @ r:.‘

“

Io. ANALYSIS

All of the information required to determine the paths to an objective may be present in a
cross-country mobility map. However, this does not mean that it will be easy for even a trained
analyst to quickly determine multiple optimum routes. Since the allowable velocity along a
selected path can vary according to the type of terrain encountered, the only way that the traver-
sal time can be computed is to integrate the velocity along the path.

In developing a computer model for route planning over a large area, a prime concern
must be to avoid what is known as ‘“‘combinatorial explosion”. For example, a four-levels-deep
full binary tree has 31 nodes while a ten-levels-deep full binary tree has over two million branch
points or nodes. If the map data consist of a grid at ten meter spacings, an unrestricted search

algorithm would generate a search tree with literally millions of nodes’ in order to plan a route
for a distance of 100 meters. Obviously, no one would actually use such a simple-minded tech-
nique. but when route planning over a distance of several kilometers is required, the almost inev-
itable result of planning a route at the pixel level is combinatorial explosion. An alterna-
tive approach is to reduce the size of the search space before the planning algorithm is invoked.

There are several methods that can be used to reduce the search space. However, they can
be divided into two classes: (1) preprocessing methods and (2) methods for searching more intelli-
gently. The preprocessing methods are concerned with the data representation of a mobility map.
The maps are normally stored in one of two forms in a computer, raster and vector. The raster is
simply the ordered rows of pixels mentioned above. The vector representation makes use of the
fact that typically a large area or the map has identical mobility factors. This area can be at least
approximately bounded by a polygon of contiguous vectors. The area, or ‘‘region” as it is gen-
erally called, can then be represented in the computer by a list of the vectors of which the polygon
is composed. At the pixel level, each pixel is surrounded by either four or eight neighboring pixels.
depending on the definition of neighbor that is used. Thus from a given node the number of
neighbors and the distance to each neighbor are always constant. In contrast, with a vector
representation, the number of neighbors will vary, and the distance to each neighbor is no longer
well defined since the shape of the the regions may be irregular. A method intermediate in storage
efficiency uses a quadtree representation' in which the map of a square area is divided into four
quadrants. Each quadrant is subdivided if the quadrant is not completely contained within a uni-
form region. The process terminates when no regions remain to be subdivided. The distance
from the center of any quadrant to the center of an adjacent quadrant (which may have been
subdivided a different number of times and therefore is a different size) is easily computed.

There is one additional representation method which can result in a large reduction in
storage requirements. Any one of a number of line-thinning algorithms can be applied to the
mobility map in order to generate a skeletal structure that will correspond to a line drawn along
the center of mobility corridors or avenues of approach.! Branches in the skeletal structure are
caused by obhstacles that force a traveler to fork either to the left or to the right in order to go
around the obstacle. Since the line-thinning algorithms require a binary image, the first step is
to generate a mobility map containing only two levels of mobility: go or no-go. An illustra-
tion of this technique is shown in figure 1.2 The three shaded figures represent regions. with the
corresponding skeletons indicated by the superimposed bold characters. These skeletons can also
be considered to be graph-theoretic structures to which graph theory can be applied. A tree-
~earching algorithm can be used to find the optimum paths through the graph.

* A nodsndicates a point along a path where there is a choice in which direction to proceed
PH o sunet, o The Quadtres and Related Hierarchical Data Steuctires, " ACAM Computing Surveys 16 2 11G81)
TSer Appendic Fofor a discussion of avenues of approach and obstacles

c Zhang, T Y and Suen, Y A Fast Parallel Algonthm for Thinming Digital Patterns,” Comm. of the ACM

2T TR s 229

cene
CRCERY -.-a
. v e e LRCEEIY n.-a
-.'."""--0 “ e . -'-¢-| - e
- - - -
eTeiiieeTaL el T .
I. - ..'..."'..'.'... terae
-. ----- ----v .-'.."'--..'.o--'-n- et
'."'..'.. -.'.- n-.- .'. u'u- Tt) ot
'- -.- .-- -v.- --"-...----'n.
." "‘ " '.'..._""l"..'..'
.- -'- '- .'.".'-...'--c'.
.- -'. ..- '.'. .-'. .'- '-
.---'-0"'.' -..- -'.-....- '.-
.t"""'.'. .'.".'.."."."
- -w
I Seceeaene s
.. '- R
. R T X
R X2 REE 2222 S
'-c--. v aaee
'. '-
.‘ .-. ."'---n ..
PR AR A 2
L2 SRR XX 4 bR R A 50 NG M seee
-
LR P PRI .
.. .". -.-'- .'-‘ -
- -'0- -.'- .-"- -
- .'.. ..--.o..c--'-- ----'.. -
rewnww SRR TR A ceeataa. LN
-.---'o- .o.-l-o- -.c. "'l'--c .-'-
-
- -.'- o.- ..c- S e "'
-
., L L reetaaa. .
. . ce?®. -
* - » b
AN . I Y
e * L, - LA AR AL E L N . M
- wraww .
cass®TL, e sseaaere e Tttt taciares ceee®iiian. .
www **5 e a0
...... . seenna cesan R I T I A,
.- .
.. N 2 AA A T T L .
. eTeiiaa.
a0 l----oo---.-c---.----.-..-
- ..
M R L IR IR
-
csere s aenan cee*, .
RAZE RS2 2221 s ce .
'-.'o--n---"-- """
.
L., L et
.. L.
L4
e, s ¥l e
- -
. . . . s --' .
. *. P .
-'. .. EEEILS .
-'- c-'.. ".----
--.. .-'-- e ..
L% R 2 2 cestiie
.
'. --o' -
P
- - e
s e M i i il Y, L.
L R mRR TR
P .. o".-
-.'-l
* '. -
L - .
'. -;'
.
'-
'.'
."
3 "

Figure 1. Examples of Line Thinning Algorithm Used to Generate Stick Figures

- o
r s

LN -“, ’

oS
LJ

The approa-h outhned above was chosen for use on this project. Other groups are
currently working on the problem of redueing traflicability maps to graphs. Therefore, eflort was
concentrated o genersting noltiple routes” rather than first developing a graph generation
module The following seetions deserihe the software developed in support of this project.
The reader s assumed 1o have a working knowledge of the LIS programming language.

A. Multiple Route Finder (MRF) Program

The mput 1o this program is a graph representation of the skeleton of 4 mobility map ax
desertbed qu the previous seetion The user enters the desired start and destination points
ated the Clesired number of routes connecting the two points. The program computes the paths
and prints the computed routes on the monitor.

Initially the graph is represented by a coineidence matrix. with a cost associated with each
are of the graph. The {mmn) component of a coincidence matrix 1= the cost to traverse the path
between the m oand o rodes. If there 1s no path between any two given nodes, the cost s
represented as -1 (The actual cost should be intinity, but -1 15 easier to represent in the com-
prater) The cost of non s of course zero, and the diagonal of the matnx therefore contains zeroes,
Sinee 1t s assumed that the cost in going from m to nis the same as the cost in going from n to
. the vatue of “he matrix element mon ecquals the value of the matrix element n.m. An NxN
mpit marrix s immediately converted into a one-dimensional array of length N where each ele-
ment of the array is a list of doublet values. For the nth element of the array, each point with a
voeihe toonis represented by a doublet. The doublet contains the node number m and the cost of
traversat from nto the node m,

An algorithm essentially equvalent to the A* algorithm” developed by Hart, Nilsson,
ancl Bapbael” was weed 1o seareh the graph structure for an ordered listing of noncompetitive
ot routes between two given nodes, Each route is represented by a linked list of nodes, with
the o=t node being the start aned the final node being the destination node. The route with the
fowest cont s Bisted first Sinee the routes are noncompetitive, no two routes can share a path and
thas they cannot share two suecessive nodes in their respective paths. The program is currently
there resteretive 1n that no two paths can <hare a road intersection. Depending on the road widths
at antersections, this mayv or may not be a pecessary restriction.

The major difference of the multiple ronve finder (MRE) algorithim used here from A* s
that A* halte ax soon as the Hest eptimum route s discovered, while MRE keeps searching until
sither there are no more unexplored routes or the required number of routes has been found. A*
Erovps twa separate bsts of nades called OPEN and CLOSED . OPEN is the list of nodes that have
not vet been explored. Tnitiallyv, 1t contains only the start node. When a node is explored, it is
moved from OPEN 160 CLOSED . and ats deseendants are put on the OPEN List. However, if one of
these nodes has previonsty been reached by another ronte. then the more costly of the two routes
=t b prnned. and andy o cheaper of the two routes will be retained. The MR algorithm
Btfers roi A thae the OPEN and CLOSED Dist are kept as a single linked List, with a slot at
o node videess to specify o whethier the node type s TERMINAL (CLOSED). NONTERMINAL
COPEN PRUNED . o DESTINATION A termmates when the destination node is reached. in
coatrast te MRE which continmes 1o seareh for additional rontes: therefore an explicit DESTINA-
TION e pe s needed

The A* aleorivhim use~ o hienristie function 1o estimate the cost to co from the current
pecbe o the bstiation nede s Tlos funetion o~ usually ealled Win). where nois the current node.
Fhoetoaal eetimated vt aesocmted with the node nos f(n) cfu) - hin.) where g(n) s the actual
vt traveiinye frome the star pode to the node no Thus, fin) s the estimated total cost for

M P ! e loenat e b omtadne Danothe et b B HD W

i TR AN . P S I R Y B T AT R P A T TUNDY TR LI R A

' ' o [leeagie wo bbby e Peerl Heurs
\ AL [N

tH bt N AU B EOP SR Nborr o B e e e e s Detern e DN o G

T S R T AL TR O I DU (TR T

N
-
‘-
~
-

¥
‘\l"lv'
R

P el
DI

Lard

y

"®
P T

Pl o
AAENRN

r

NG NN
LR N G

»

[g | y
B G

..".".‘

»
Eh

‘a's

»

TN
"o,

traversing a path from the start node to the point n and then on to the destination node. A
heuristic function can be shown to be “acceptable™ if it is monotonically nondecreasing and nonn.-
gative. If the heuristic function is acceptable. then the algorithm is guaranteed to terminate with
the optimum selution. Conceptually. the simplest heuristic that meets these requirement =ty
euclidean distance from the the node n 1o the destination node. The actual cost can cquad bt
never be less than this straight line distance from n 1o the destination

The basie data structure used for this program i~ the defstruet, which = covalable
Zetalisp and Common LISP. Tt is stmilar to the disembodied property list of FRANZ ISP

“ach node defstruct has siv slots contaming « node number -0 - father-pointer dow-
Each node defstruct | Ix slots cont g i i fatl et fow
pointer -, - weight -~ feweight - - type -0 and - coordinates 0 The node nmbeers

correspond to the number used in the coineidence matrix, the father pointers are nsed to pepresent
the search tree. the down-pointers provide the links for the linked List of nodes werght i the aeen-
mulated cost from the start node to the subject node, f-weight is the sum of weight and the
estimated cost of reaching the destination node. type is as explained in the previous parsaraph and
coordinates are the geographical coordinates of the interscetion represented by the pode s The
entire search tree can be explored by traveling along the Linked list from the first node to the bas
node. At vach DESTINATION node or TERMINAL node. trace the father pointers up to the ~tant
node. A graph and the corresponding coincidence matrix are shown in figure 2. The oxplanation
of the search tree can be sitmphitied by setting the Leuristic function to zero. The distanee along an
wace connecting nodes moand n corresponds to the value in matrix clement {nen) The
corresponding search tree i~ shown in figure 3. The nodes of the tree correspond to the nodes of
the graph of figure 2(b). The starting point for the search trev s node | and the gonl 1= nede 5
There are three descendents of node 1. The corresponding distances from wode T Shown
adjacent to nodes 3, 2, and 8 Node 3, in turn. has only two descendent nodes sinee node 1 o
ancestor node. The eumulative distances from node 1 to nodes 2 and 1 are again adjaeent 1o the
nodes. At this point, it should be observed that another path to node 2 has afrondy been
discovered. but with a distance of only 300 compared 1o 1800, I the sub search trees for eacli of
the identical nodes are expanded, the tree will be identical exeept that the weights on one tree
will be 1500 greater (1500 - 300} than for the other tree. Therefore, the subtree with thie larger
weights can be pruned. This s indicated by the stash across the line and the leorer Pobdow the
slash. The procedure outhoned above is continued antil cither of two conditions has been carg-tied
(1) all remaining terminal nodes have been pruned: or (2) the required number of routes fias been
found and all terminal nodes have either been pruned or have weights greater than any of the
destination nodes.

Three aceessor functions for the defstruets were written and are widely used throughom
the program. These are (1) new . (2) feteh and (3) pstore. These functions were arginally
used 1o access property hsts when the original version of this program was coded to run i Franz
LIS In the Zetalisp implementation, it s possible to use either the property list version of
these functions or the more eflicient def~truct version. The function new gencrates a gensym
name and interns it (e puts the name on the oblist). The function pstore with arcoment.
name. value and, property i~ divectly analogous to the getprop function. Similarly. fetch ha-
arguments name and property and retarns value.

Freure 1 0s o hist of all global variables and a list of every function along with o lise o
functions called by o given function. Figure 5 s o graphical representation of the fontion
calls bt warh the Jow Level aceessor and graphies calls deleted moorder to simphfy the e
e, Recursive calls are shown to the functions insert-answer and graph. The fontion get-
graph contyin~ o ~ample comedence matnix In actual practice. o anatriy wonid bepeaed
from o disk dile Y lrang of the program s i appendin A

~3

9
6
1
& ?
(a)

1 2 3 4 5 6 7 8
1 0 300 1000 1700
2 300 0 800
3 1000 80 0 800
1 800 0 1500 1000
3 1500 0 250
b 1000 250 0 300 1400
7 300 0 1000
X 1700 1400 1000 0

{b)

Figure 2 (a) Graph Representation of Routes and (L) Corresponding Coincidence
Marnix

- -
o, -

A A A

‘ M - - L) - ~ - - - - -‘ 1.' .
RPN WY PP RON A T BRI S VA

e s e @b R IR S @

¢ 2431 jo ydess 10§ g jo apou [e0F pue | Jo IPOU 1IvIS M 331y YdoIedg ‘¢ 3InBiy

i S ot - e e W

Y .. ‘@

PN WTAINESS
a .0"“.0\'..0

.-.90.

M. e

a

-~ tm

Bttty

.
e
L)

ot
vz
,-N-.O.
» .
‘\ -
'lll
o
n]
o
vy
<«
b g
35
e
5
K
.
Pl
N
o
.
» Nl
.\ -
\
Pa
f'
R
s
(I
Pt &
A r
)
S 5
o
ey
y 4
o
nl
n‘\
bl -
e
g
A
~
Fnlu‘
0
S
S

v“ -2 .

" ;\':‘l:\x i "\'

Y

-

W W W W . TR R WU N UWY WO W WITE - Fywewae gy w P T O RO T T OO PO e

List of functions and calls to other functions and global variables:

triple:
get-graph define-window pcopy pstore draw-arc update checklist
send print-answer new
GLOBALS USED: no-nodes-left finished startnode destnode nbrpathsfound
: answerlist top ptrnodel nodel
get-graph
store-graph GLOBALS USED: coordinates data arr
store-graph
graph
graph
graph
new
fetch
update
fetch pcopy pstore new draw-arc insert-node pop print-list
GLOBALS USED: finished top ptrnodel
draw-arc
fetch line
insert-node
fetch store-soln pstore find-link GLOBALS USED: destnode
find-link
fetch pstore prune-check
store-soln
prune-check fetch pstore insert-answer
GLOBALS USED: nbrpathsfound answerlist
insert-answer
insert-answer
pull
fetch pstore GLOBALS USED: no-nodes-left finished top
prune-check
fetch prune GLOBALS USED: destnode
prune
fetch pstore
print-answer
pop fetch
GLOBALS USED: start-node dest-node
penult
fetch
checklist
pop fetch penult push
GLOBALS USED: no-nodes-left finished startnode answerlist top
print-list
fetch GLOBALS USED: top
make-colors
line

Figure 4. Global variables for multiple route follower

VYRR

]

!

L)

¢
5.
K.
:
P
b '
4 ‘.\
3LS
b
- GET-GRAPH---<~=TRIPLE-->~-CHECKLIST-->--PENULT
.
N
= \ 1/ \|/
4)':
i STORE—GRAPH \|/ PUSH
i
——-DRAW-ARC-->--LINE
N GRAPH-——- UPDATE-->——
e -—-PRINT-LIST
Y Tyt
) ‘{
™
. heuristic—-—<—-INSERT-NODE-->--FIND-LINK-~—->——PRUNE-CHECK-->--PRUNE
._,:
i .*.j hypotenuse
N
" !
A STORE-SOLN————————= P
Zj'.:f
o
- INSERT-ANSWER
L
o
tj Figure 5. Flow Diagram of Principal Functions Used in MRF
-~
by
N
™~
X B. Graph Generation Using Mouse *
3 This module provides a capability for the operator to manually input a graph representa-
. tion of the mobility map by using the mouse device to trace mobility corridors on the color moni-
J :'5 tor. The software automatically generates the internal data representations. The top level func-
e tion in this module is get-graph-using-mouse. The MRF module calls either get-graph or
o get-graph-using-mouse depending on whether graph data have been digitized previously or
Xag are to be obtained using the mouse to extract routes from a cross-country mobility map displayed
o on the color monitor. This function first initializes several arrays and then tests to see if a
"}:-' monochrome or a color window is to be created. The variable win-1 is bound to the window
:-'_ name, and the global variable *flag* is set to true. The function trace-arc-using-mouse is in a
My loop that continues until nil is returned by the function.
iy a @
| : ® A mouse is & device that is used for controlling the cursor position. It consists of « small hand-held box with a
N small trackball mounted flush with the bottom of the box. When the box is slid over a smooth surface, the track ball
+ Il can rotate in either of two dimensions. The mouse device also contains three buttons that the operator can push in order
:‘ to signal the computer.
.{"
»
- 11
' ‘.. -
A
2 .-l
L X
2

R - - R IR 7 T T YL I SR S . R > PR T T O AT A A G SR L P N B
-’ 0 %4 jo¥ B NS LA "J,“‘. WY Yo ; R { (\.*‘ ERCA N

OB " LA / A AN y ; LS T TR NS IR AT O

.o_l,o."p.l.;,'.sf‘.c,i,.!\s'}.ofﬁ.o Vel .Ji,.”l,. DEONORDA A A YIRS 3'1‘ L ..h‘,:iu!.u.. e 0‘,.%!. ,:"‘. W 2 + B o

e,

" - - W -t
A\

1
*."

A The function trace-arc-using-mouse calls draw-segment, which fits spline curves to a
'\:‘ road segment. One or more segments constitutes an arc with a solid circle drawn at each end

. of the arc. When draw-segment returns nil, the last arc has been drawn. Otherwise, draw-
*_.“: segment returns a list with two atoms, which is then bound to the variable curve. The first value
A is the traversal distance of the segment, and the second value is used to test if the segment is the
* last segment of an arc. If it is, then the node at the end of the arc is drawn if it was not previ-
S ously drawn. If the segment is the first segment of an arc and the function old-node-p returns

~‘: nil. then the node at the beginning of the arc 1s drawn.

-{: The function old-node-p is a predicate function that tests to see whether the coordinates

:.: for the new node correspond to any previously tagged node within a precision of 10 pixels for

each axis. Thus, nil is returned if the node is new, and the node number is returned if the node
i corresponds to the location of a previously tagged node.

_,.:: The function plot-solid-circle has four arguments: z and y coordinates of the circle, the
N node number, and the color of the circle. The function prints a solid circle, prints the node
:’,.:- number in the center of the circle, and then repositions the cursor at center of the circle.

A C. Line and Curve Drawing Functions
; The function draw-segment draws lines on win-1 by calling the function traverse-road,
St which in turn calls the function connect-points-with-line. Mouse clicks are used as fol-
:':» lows: left click puts point. middle click indicates point is last point. The straight line curve
N connecting the points 1s cleared prior to drawing a cubic spline curve through the points with
:::-' draw-cubic-spline. The number of points used to generate the curve is returned.

. The function traverse-road calls connect-points-with-line and uses the Pythagorean
Shedl theorem to compute the length of each straight-line section defined by the arrays x-cor and
:'_: v-cor. The lengths are summed to get an approximate value for the lengih of the spline curve

\'_'; fitted to the sequence of points. If connect-points-with-line returns nil, then traverse-road
,'. will also return: otherwise, the segment distance will be computed and returned. Nil is
g, : returned by connect-points-with-line to signal that no more arcs remain to be traced.
('.' The function connect-lines-with-points places points on a window with the mouse and
A draws lines between them while storing the point coordinates in two one-dimensional arrays.
' Window is the exposed window where the points are placed, and z-cor and y-cor are the two arrays
- where the relative window coordinates are stored. Clicking left once places points; clicking mid-

. dle places the last point and exits. The number of points is stored in the fill-potnter for array

a0 0 s

r-cor; the function then returns the number of points.

D. Screen Control Functions

A

:J: A global variable 1s used to specify whether a color or a monochrome screen will be
:"\ used to display the graphics. The variable called *screen-type* can have two valid values,
,: which are (1) color: a color window will be created on the color monitor, and (2) b-w: a mono-
s chrome window will be created on the right side of the monochrome monitor. Similarly, the func-
“ tion draw-arc will call either bw-draw-are or color-draw-are depending on the value of
= fsereen-type*.
el E. Special Macros
::. Two macros are used by the other software modules and are defined below The function iff
[\ is the standard
";-: (if form1 then form?2 form3 ... else form_a form_b ...}
Y construct. The key word “then™ must be used, but “else” is optional.
A The macro loopl has syntax similar to the cond function except that it loops instead of fal-
e ling through if no predicate evaluates tot. The syntax is shown below:
NN
SN {toopl
:.,.' {(fen_1) form_1 form_2 form_3 ...)
vy (fen_2)

12

PP, 4
SIS
e

b

Fta L
\‘, > ®

o L% y " N SRl T L). T L P R T ¢
X > LAY
Welths 12 iy P B s ATy,

»

P R R R
PRSI IR EN I
(e i o Y . 2 i ™

nd = hodhd ath abd She anc afi bt ath b it sibdl olih A hh ol - add- e ald- dlac mes Sad aac gl gas
i s
‘
T
>

it

A

O (fcn_3)

b

oo .

b ;: {(fen_n) form_A form_B ...))

J‘;., where fcn_x indicates a function and form_x indicates an arbitrary LISP form or expression. If the
:c:‘,t macro sees only a single parenthesis at the start of a line, it does not treat the function that

follows as a predicate, but simply executes the function and drops to the next line. Alterna-
tively, ((setq a t) ’exit) will result in the loop being exited with a value of exit returned.

&ty e
. ."." ‘:"’(

»
V]

-

4
A
AT

B e

o

13

P

-

A
YA N S

S

L}
N
v
II. CURRENT STATUS
'i
By
‘.’}
N
N The software described in the previous section has been debugged and tested with a rela-
--\ tuvely limited set of data. Special cases that were believed to be most likely to cause problems
. were included in the test. Currently the graphics display shows the routes that have been
d. . explored, but neither annotates the selected paths from the start to the destination. nor shows
o, N ye . . .
‘o the arcs that have been pruned. These capabilities will be added to the system in the near
:'.\' future. Tests will also be conducted using larger graph structures. Figure 6 shows the output
.’:'_. of the multiple route finder for six cases using the graph of figure 3(a). Following the words
oy “father ts n” is the linked list of nodes that exist after inserting the descendants of n’ into the
*
A

list. In the linked list. the node suflixes have the following meaning::

a N - Nonterminal node

X D - Destination node
: ﬁ: P - Pruned node
:\; none - Terminal {i.e., unexplored) node

0N

(1) Start node = 4 and destination node = 8, number of routes = 4.

e Examining the output of case 1, one sees that node 4 is opened and its three siblings are added to
“'-. the linked list “4N-6D-5-3". Node 1 is nonterminal because all its siblings are on the list and node
:»_ 6 is the destination node. On each of the succeeding lines the left-most terminal node is opened

::-. and its siblings are inserted into the list. Finally, at the line “father is 7 :,"’ the last unexplored
4-“ node has been explored and four destination nodes are on the list: however. only three of these
. nodes represent legitimate paths. To understand why this happened. consider the previous line.

where node 8 was opened, and nodes 6 and 7 were added to the list. Node 6 is immediately recog-
nized as the destination node and is changed to type destination and added to the answerlist.
Node 7 is now opened and its sibling node 8 is recognized as the destination node. The funec-
tion prune-check fails to recognize that one of the two node-pointers to node 6 should be pruned
because node 6 is the destination node. To solve this problem, the function checklist calls penult
to see if any of the pointers on the answerlist have identical penultimate nodes. Since the
paths are traversals from the destination node to the start node, the penultimate node of a
search path is actually the second node in the forward direction. When two such paths are found,

(""
gL

i '5-:: the longer path is deleted from the answerlist. This happened in case 1. and thus the path 6-%-
0 *.J, 1-3-4 was eliminated.
oyt
"_. (2) Start node = 4 and destination node = 6, number of routes = 2.

In this case only two paths were requested, and the search was terminated when the two were

b found, since the only node open was 1 and the distance from node 4 to node 1 is greater than

o either of the paths on the answerlist.

.

A (3) Start node = 4 and destination node = 8, number of routes = 1.

j In this case the distance from node 4 to node 3 is less than the distance from node f to node 6.

® However, f(3) = g(3) + h(3) is greater than f(6) = g{(6). and the one destination node is found

A immediately.

.

;’,-:: (4) Start node = 8 and destination node = 4, number of routes = 4.

e This case is the same as case 1, except that the direction is reversed. As expected, the selected

:', paths are simply in the reverse direction.

Y
:1 (5) Start node = 1 and destination node = 5, number of routes =3.

"':: In this case the first optimum path computed was 5-6-4-3-1. The subpath 5-6-1 was chosen
X o instead of 5-4 since it is shorter. However, inclusion of node 6, clobbers the alternative route 5-6-
e, 7-8-1. Ideallv, MRF should have selected the longer route for the first path so that the second
i '.;; path conld go through node 6. There are several possible approaches for solving this problem that

s
- 14
Iy
v
I
o
.

L]

':..:. - N A, A L T T e 0 | e oo el LAl A e T L

, : AN .:,‘l..l.:a .p (0’3"&) AL LR R b ! AN 'I " "-I' "\ ' 'N v - |'. o > () ‘. " *

weifo1q 1uty Mnoy dnn jo mding Idmeg ‘g ansiy

¢ 4SVO 1 3SVD
G MOpu M| ¥ nopuiy
9 E
»
S
g JAUIIB|T nu:— G J3uae oQ.J
B
IIN
#-€-1-8-9
IS} JJEIS 03 HOWQ UO}IEULIBIP WOUJ YIed "9ZT S} J0ULISLp
»-S-9
IS} 14838 03 XO®Q UCLINULISIP WOJJ YI®J "Chy B} IDURISIP
»-9
] IS} IJ4EIAS 03 XOOQ UCLIGU|ISIP WOU YI®4d "BE & F0URISLP
TIN (896809 19809 64¢89 ¢9¢09)
»-G-9
I8} IJEIS 03 XIOQ UD}IBUYIBIP WOJY IR “Gh 8} IDUEISP 09-Nd-d2-d1-09-NB-NT~NZ-NE-09-NS-T9-Nb ¢ B} Jaywy
#-9 ¢-dZ-d1-09-NB-NT-HZ-NE-U9-NG-09-Nb B §} Jauley
ISy OIS 03 ¥ORQ UO|INU|ISIP WOLY YI®J "OE S| IJUEIR P dZ-d1-8-NT-NZ-NE-T9-NG-Q9-Nb 1S 4YaIey
(60689 ¢£6809) d1-T-NZ-NE-QU9-NS-09-N¥ P2 8 Janey
T-2-NE-Q9-NS-09-Np PE B} JAYIRg
€-09-NS~(9-N¥ PG s} JaIey €-09-NG-09-N¥ 26 St SNy
€-5-09-Nb o 8 Iy E-S-09-Ny Db s Jaey
2 8yi1ed unu} 300 4o JIQUNU INdu} » 18YIed Wnu3do 4O JIQunu 3nduy
9 §p IUDIRULISIP JO PUP JUHOD JIEIS JO SJAGUNU IPOU INAUY} (3(T44I) 9 § :UO)IPULISIP JO PUR JUI0d LIS JO BIIQUNU IPOU NCU| (D} J3)

l‘r - r ~ —ea . - = - - v b -Il- g * a
NE: . TIRINEY. RRONY | RTINS JTahahl: XXANAL FIRRFF 3\) HAAAAN L JIFIIRIH

by e l?\ .- S

panunuo)) ‘weidol 1dulg Inoy jdnnpy jo ndinQ ajdureg -9 aindi g

¥ 4SVDO € dASVD
¢ MOpULN 9 nopuy
9 €
14
S
8 J3UIIS} ds}) é J3usIs)| O3}
©
\ ——
4
s
3 Y
p 't
. (Y | (&
» 9-8-1-€-¥ Pl
18} JJEIS 07 HOOQ UO|IQULISIP UC., YIed ‘GZY S} IoUeI8|p ™
} 9-G-# <
iS) I8 03 HO8Q UOIRU}IBIP WOJY Y394 ‘G 8| J0UeIS|P -5
9-b -
18} 24038 03 ¥O0Q UOLIQULIBIP WOUY Y4 'BE €} IoUeI8|p T
(2(B19 BOOIH S9689) . lﬂ.
-
“ dZ-dE-NZ-QP-NT-NE-dd-dB-NB-NL-Qb-NS-0¥-N9 o
d dZ-dE-NZ-0P-NI-NE-dL-dB-NB-NZ-TP-NSG-A¥P-N9 : Z ®} Jaysey L .
§ dZ-Z-QP-NT-NE-dd-dB-NB-NL-Ob-NG-0b-N9 : € 8} Jayley 1IN -
d Z-N1-E-d{-d8-NO-NZ-T¥-NS-AQ¥-N9 11 8 Jayley *-9 (A
1-de-d8-NB-NZ-0b-NG-AP-N9 : § ®} Jayiey 8} 14838 03 HOOQ UO}IBULIEIP WOLY YIRd PE S| IJUeISLIp g~
" d8-8-NZ-0b-NS-Tb-N9 L 8y ARy (9v609) ﬂ
4 B-£-UP-NS~-AP-N9 * G $} J3yIey 3
8-¢-S-0¥-N9 : 9 8} Jayey €-S-09-N¥ Py 84 JAUNRY
h. » :syjed uNu|Ido JO JIQUAU INdU} 1T :5yed wwado o JaIqunu INduj
ﬁ P 9 UOLINULIEIP JO PUR JUL0D 1S JO SIIQUW IPOU INdu} (3| dyJ3) G p UDJIPUISIP JO PUE JULOD JIEIAS JO SIIQUNU IPOU Induy (3(d}43)
L
y
p
y
b
4
.
3
"]
r
b
r
]
A
;
A h . PR ~3 e T 2 a VR RN T AR SN SR
FWL . . CX) EAALAE W LI ul LN I M Gt . ’-cffff / Y l-l
Mv S N %! ‘\Q‘-'“v“.~ n.m. - .l e) . .J?Ja-’ v.\.ll-’-.-(f)u- \J.". .r‘.fd'*' P, . .'1.— ,!ﬁpcl'-c.c-t;h\

panunuo)) ‘weldold Jaulj Anoy aiduny Jo mding sdueg g undiy

8 dSVO S 4SVO

T1 nopus o1 nopuiy

",

L4
2 ‘?‘.
o=
o« il
.-‘
r <
P
L ¢ &8
.‘l
8 -
Z1 J3u3d3sy) n:._— 11 S3u33s;) ds N
- Q.ﬁr
L
' lm.
~ »

- .

o
\ - &
¥
Dk
5
o
B | * 5
b
TIN N B e
§-9-8-1 1-8-9 - -
18) 34838 03 NIUQ UOIRULIBIP WOy YIed 88 S} IJUEIS|P t9) J403I8 03 }O8Q UO|IRU|ISIP WOJ YIBJ "B B IDUEIN|P « &4
S-v-E-1 1-€-¥-S -
1B} 3438 03 XOUQ UO|INULISIP WOy YIR4d ‘€ #) SOURIS|P) I8} 1JE3I8 03 HO@Q UOIIVU}IEIP WOUY YIBJ ‘EF S| VLIS, P ... —

(S9919 E¥919 26519) (STST9 26419 €4913) A
d9-di-£-G1-NS-(T-db-NB-NI-T T-NE-NP-HNS P2 8 Ay dB-db-dd-dd~dC-¢-Z-U5-NI-0S-NI-NB-US-Nb-NE-NT P9 s ey -000,
d9-dé-¢-2-0T1-dP-NB-NI-QT-NE-NP-NG : B8 S| J3yey db-de¢-dZ-¢-2-9-0S-N9-NB-0S-NP-NE-NT : 9 S} Ja3yley Cp="
d9-¢-Z-db-8-H3-TT-NE-HP-NS t 9 8 JAIey dZ~¢-Z-9-9-NB-US-Nb-NE-NT 288 ey o)
d9-2-9-0T-NE-NP-NS : € S} JayIey dZ~2~9-8-0S-Nb-NE-NT Ty s JIey *
d9-9-E-Nb-NS Pop s SRy d2-2-8-p-NE-NT D E B} JWIey g
9-p-NS @ G S} JIey 2-8-E-NT1 : I 83 Jayae, S
€ 8SYyl19d uNW}Ido JO JIQUNU INdu} € :8y3led WUNW} L0 O JaQUNU INTU} [="

Y
l,o

[§ :UCLIGU}IRIP JO PpUR JUL00 IIEIE JO SJIIQUNU IPOU INDUL (31D}) G 1 :UCLINUL3ISIP JO PuR 3uj0d 1838 JO I andus (a1d343)

\J

‘A
%

,‘,n‘fﬁ‘n i) ‘,,t.‘ ﬁ,’h

Ty

2
K

AT

'lbﬁn"l.. ‘l!*uﬁ - AL S R P w'a Sa S0 NN TS J -,u W In g 2 4 4 , 58 8 o 2 Y e -.hin)l.flfn 2l IV EY. s ..'c..of-‘. rP-/dleKv vlul-".fodf" . _

-
* -y - - [oo, 3

A L T La i o

.,u:; will be explored in future work on this project.

(8) Start node = 5 and destination node = 1, number of routes = 3.
This case is the same as case 5 except that the direction is reversed. As expected, the selected path
N is simply in the reverse direction.

. :".

LA S

*

NN

~
Py

- e o o, -
s &

-
-

£

‘
.

& ‘al‘\r‘-
.l

[N
..l..' >

— .

atu v
8 ORI
- B oS e

-~
- R
A a4

q

18

-
B
ASEAL

hJ

2P

[]
frrrf_r T a R AR P T N E T “y . -
ST, e, % " SRy TSN - ey (T IR, VS »
B A ORS NI ENI TP ST e o D i) lapiauindavtcvotly X

., .

i o -, LR Tl R N L -
) DN DN OROAOAINON
bl ARl Attt ettt

-

IR
F R I P

»

o
-_'n d”

L

Py
‘.l

-
o,

X

X
A
A
.
"

IV. FUTURE ENHANCEMENTS

Several enhancements are planned for later incorporation into the system:

(1} A front-end that will compute the graph-theoretic representation from digital trafficability
map data. Trafficability maps provide a plot of mobility across terrain for a given vehicle
type and specified weather conditions. These maps are thus the composite of several map over-
lays. Other groups are currently engaged in developing the capability to automatically
generate the graph-theoretic representation of trafficability maps. When software to accomplish
this task becomes available, it will be incorporated into the system.

(2) The number of route intersections in an area of interest is proportional to the size of the area.
The search time increases exponentially with the number of route intersections. Thus, as the size
of the area increases, there is an exponential increase in the search time. For effective planning
over long distances, a pratical system must have the capability to first focus its attention on major
roads and then use all available route information f{or detailed planning in small areas.

(3) In the current implementation all graph links have a preassigned constant cost that could
correspond to distance or to the time required to traverse the path corresponding to the link. An
enhanced capability will enable cost to be assessed not only in terms of traversal time but also in
terms of fields of fire, availability of cover, and the potential for manmade or natural obstacles.

ol AER ARG APE & B g 5 A ik b el bol ol Ml Al ddacdbbe Acm e B 8 0 o0 4 L o V-

N V. REFERENCES

”"' .1, Samet, H. The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys
X 16 2 (1984)

N 2 Zhang, T. Y. and Suen, C. Y. A Fast Parallel Algorithm for Thinning Digital Patterns,
- Comm. of the ACM 27, 3 (1984) 236-239

-y 3 Hart, P.E., Nilsson, N. J. and Raphael, B., A Formal Basis for the Heuristic Determination of
o Minimum Cost Paths. /[EEETrans.

5450
.,.".','."'I <

...’ r'
l.-l_" . ,;‘/

[y

o ' _.. " "
20000

P

i A
Pt LR A

i

FFONrS ...! -
JJ.A.’.}

- . }" "(‘"-

s

SRR

L2

q4
o)

;.;»,«
Pl P
V'
.I .'.. » . ‘l
S

0
a

20

NCAPNENEL
‘?f LA

A,

&

r.a
o4
9

R My e

LA R TR S T Y e \ [T . :q.j'i.'.\‘."-. -'_‘.’ AT T

LA RS LR PR JV ‘r’-
G A AT L e T i, T
R O DA T NI TSN e om e dqind

X,
-
-
~
-~
~

-
B

-

PA,__~
A

V1. APPENDIXES

21

RN S SR TR ,.x./#.a.\ T..

-..,...I..r..t J ll.r .f-.-..va RN
\I.\n.\m.fn.....&f \....r\r..w .‘\\. 5\x~\w% ﬁ ..M..\\.:. ‘(L vf-dn.rr..f Y
~ - s Caar e 4 R A

SLALY Ly .~

QCS&}

AL PAAGAAAARK (NN AN

v
oA

oo

-9 -~ :
PNV N A

»

S3y

Oy,

o
L)
*

A. Multiple Route Finder Program

Jdast of functions and calls to other functions and global variables:
Anple
store-graph define-window peopy pstore draw-are update checklist
send print-answer new
GLOBALS USED: no-nodes-left finished startnode destnode nbrpathsfound
: s answerlist top ptrnodel nodel
store-graph
graph
.graph
graph
new
fetch
:update
fetch peopy pstore new draw-are insert-node pop print-list
GLOBALS USED: finished top ptrnodel
‘heuristic
hy potenuse
GLOBALS USED: destnode
:draw-are
feteh line
ansert-node
feteh store-soin pstore find-hink GLOBALS USED: destnode
Aind-hink
fetch pstore prune-check
~tore-soln
prune-check feteh pstore insert-answer
GLOBALS USED: nbrpathsfound answerlist
Jnsert-answer
insert-answer
pull
feteh pstore GLOBALS USED: no-nodes-left finished top
prune-check
fetch prune GLOBALS USED: destnode
prune
fetch pstore
print-answer
pop fetch
GLOBALS USED: st .i-node dest-node
penult
feteh
checklist
pop fetch pennlt push
GLOBALS USED: no-nodes-left tinished startnode answerlist top
print-lhist
feteh GLOBALS USED: top
dnake-colors
e

22

(defvar no-nodes-left)
(defvar finished)

(defvar startnode)

(defvar destnode)

(defvar nbrpathsfound)
(defvar answerlist)

(defvar top)

(defvar ptrnodel)

(defvar nodel)

(defvar coordinates (make-array 8))
(defvar data (make-array 8))
(defvar arr (make-array 8))

?

(defun hypotenuse (x1 y1 x2 y2)
(sart (+ (" (- x2x1) 2) (" (-y2y1)2))))
: Heuristic estimate of distance to destination from node n based on
. Euclidean distance h(n). The total cost at node n is f(n) = h(n) + g(n)
; where g(n) is the total cumulative cost in traversing a path from the
; start node to node n.

(defun heuristic (node-nbr)
(terpri)(princ " h[") (prinl node-nbr) (princ "] =")
(prinl(fix (apply ’hypotneuse
(append (aref coordinaves (I- node-nbr))
(aref coordinates (1- destnode)) }))))

;***t#*****t**‘#***#*********geVgraph***********************************
; arguments: none
: returns: not used by calling function
(defun get-graph ()
{filarray data
'((0 10.0 22.4 -1 -1 -1 -1 38.5)
(1000200-1-1-1-1 -1)
(22.4 20.0 0 26.0 -1 -1 -1 -1)
(-1-126.0035.0300-1 -1)
(-1-1-13500100-1-1)
(-1 -1 -1 30.0 10.0 0 22.5 39.8)
(-1-1-1-1-1225024.1)
(38.5 -1 -1 -1 -1 39.8 24.1 0)))
(fillarray coordinates
'((10 10) (10 20) (30 20) (55 27) (90 29) (84 21) (72 2) (48 4)))
{store-graph data arr))

23

by e PR AR A NP S S R S e, RN I I R A RS S S) . A e At mmamy v A e,

U ') Vf <, -y “» » Y L i AR LV P TR S W Ny W e W=, e .~
Tl te, N 2l 5 e S ot Y0, 1 T T A AT A ¢ oy CAN P - (PN 2% VAR A A
RIS & Ll AOAT O s A0 A 28 S Ly ARG e 4 g AR |:?.0..0.0:‘ (Y, J.‘:’.’:l.hl AR

L

R R T T N W e TN T W T W W T Y O
~

]
o
' “:’
s

LRy
MERERFY

:‘1‘:’

&

oy ANy
~la"w A e

A ‘\,‘\t":“- -4
TR I e

.
"

o T WAy
| d)
RALAASSA

4

: TRIPLE finds the N best routes between two nodes of a graph. The
routes are determined by constructing a best first search tree from

: the graph. The search tree is stored in a linked list. When terminal

: nodes are added to the list, they are inserted into the list according

to the weight of the node. Nodes are terminal, nonterminal, pruned, or
destination nodes. The next node to be searched is the top-most terminal
, node,

L arguments: npone
: returns: none (top level function)
(defun triple ()
(let (nbrpaths)
(setq ptrnodel nil)
(setq answerlist nil)
(princ
“input node numbers of start point and of destination: ")
(setq startnode (read))
(setq destnode (read))
(terpri)
(princ "input number of optimum paths: *)
(setq nbrpaths (read))
(terpri)
(get-graph)
{get-graph-using-mouse)
(define-window)
(setq answerlist nil) ;initial variables
(setq finished nit)
(setq no-nodes-left nil)
(setq nbrpathsfound 0)
(setq top (new))
(pcopy top ptraodel)
(pstore top nil "downptr)
(pstore top startnode 'nodenbr)
(pstore top nil 'fatherptr)
(pstore top 0 'weight)
{pstore top 'terminal 'type)
(pstore top (aref coordinates (subl startnode)) ‘coordinates)
(pstore top (heuristic startnode) 'f-weight) {terpri)
{draw-arc top top)
{loopl
(if (or
(update arr coordinates)
(- - nbrpathsfound nbrpaths))
(checklist}))
{{eq finished t}))
(send win-1 :set-cursorpos 0 0)
(print-answer (reverse answerlist))))

24

e

B ol
A5

>

Lol S Coft anlh ol dial AL A L A b Loh 8 ol L Al -co 8 ks a

;ttt*tit*tltt***tt"t‘#tttstore_graph**t*#ittt#tttt***********#****#****

(defun store-graph

: function takes the coincidence matrix ‘data’ and generates the sparse
; matrix representation "arr”.

: arguments: data - coincidence matrix represented as 1-d array of lists
; arr - sparse array represented as 1-d array of lists

; returns: not used by calling function

(data arr)
(prog {(m row)
(setq m -1)
(loopl ((= m 7) t)
(setq m (+ 1 m))
(setq row (aref data m))
(aset (graph row 0) arr m)))) ;Process mth row of data
;******************************graph************t***********************

{defun graph (r n)

)

; graph recursively generates sparse list from mth sublist of input data
; stored in the global variable data. The input representation uses -1

; to represent infinite weight {i.e., no path) and zero for the distance of
; a node to itself. The zero and -1 values are stripped from the sparse
; list.

; arguments: r - a list containing mth row of coincidence matrix "data”
; n - column number initialized to zero by store-graph

; returns: list of lists containing weight and node-nbr for each path

(rn)
(setgn (+ 1 n))
(cond {{null r) nil)
(t
{append (cond .((<=0 (car 1)) nil)
(t (list (list (car r) n))))
(graph {cdr r) n}))))

‘****************#*************update******************************
{defun update (arr coordinates)

: function inserts descendents of father node into the linked list and checks
; to make sure that a node and its grandfather node are not one and the same.

. arguments: arr - sparse matrix generated by store-graph
coordinates - 1d array of lists containing x,y coordinates of nodes

: returns: the Boolean variable finished

25

NIRRT a TR TR e TR T TR R
T WU N W T W E N R W E N RS PRI YRR TR TR R T RITR R LA (PR T AT TS (T TP E e | M 1T P TR

AL
LA (prog (psnew p q g0 w0)
kv 1 (setq p (pull)) ; Get new father node
:'_-::'_ {cond
N (finished (print-list) (return finished))
.~ .
o (¢ niD)
s ; {terpri)
« (princ "father is ")
. (prinl {fetch p 'nodenbr))
o ,r:: {princ " : ")
P {setq q (aref arr (subl (fetch p 'nodenbr))))
:l ‘;.: (loop1
" (setq psnew (new)) ; Create new node
P {cond ((< > (fetch (fetch p fatherptr) nodenbr)
¢ ') {cadar q))
f; . ; Then grandfather node is differentfrom son node
K ,.:_ (pcopy psnew ptrnodel) ; ptrnodel points to template
S (setq qO0 (cadar q))
K : {pstore psnew q0 'nodenbr)
B (pstore psnew
» (setq wO (+ (caar q) (fetch p 'weight)))
2.8 'weight)
._.7;.:- {pstore psnew
':.,,: (+ wO (heuristic q0)) 'f-weight)
AR (pstore psnew
“-'f'-' (aref coordinates (subl q0)) ;print
r ‘coordinates)
T (pstore psnew p 'fatherptr)
i" {pstore psnew ‘terminal 'type)
N2 (draw-arc p psnew)
'r‘_‘-: {insert-node psnew top))
A (¢ nil)) ; else do nothing

(pop q)
{{null g) {print-list) (return finished}))))

—

o a
7
[y

<t

7. v
A A

P)
“~ Ny

)

:**************************insert_node**********************************

NS

{defun insert-node (pin p)

CR

)

. insert-node inserts the node < pin> into the linked list <<p>>. First a
; check 1s made to see if < pin > is the destination node. If it is, it is
. added to the solution list. If < p> points to a nonnull node, find-link
: traverses the nodes and inserts < pin> so that weight is numerically
;ordered. If <. p_>~ points to a null node, < pin>> is attached to <p>.

S
-’"

SN @
R R R RR

ChH NS

: arguments: pin - pointer to node to be inserted in linked list
: p - points to the head of the linked list

et

. returns: not used

Y
)
%

(pin p)
(if (eq (feteh pin 'nodenbr) destnode) (store-soln pin p))
{cond {{not (null (fetch p "downpr))) (find-link pin p}))
(t {pstore p pin ‘downptr)

@
.‘l._‘ é

[

SNAS

3

-
2

a_a

LIy

g -

s(

X 28

N
s s

i adh ol el e dc B b et Bl il e Ach anidh sl ALl mbh stk udi bl adhc il - Al ot et ek Ak 8o denlh dad Bkl Sl Aok a4

{pstore pin nil "downptr}))))

’

.i#iltttt***t**t**t***#***t*t*ﬁnd_]ink*tt*****t****t********#**i******

(defun find-link (pin p)

; find-link traverses the list <<p> and uses the weight key to insert
; << pin>> in numerical order. If the end of the list is detected, < pin>
; 1s inserted at the tail of the list.

. arguments: same as insert-node above
. returns: not used

(defun find-link
{pin p)
(prog (psO psl)
(setq psO p)
(setq psl {fetch p downptr))
{loopl ((null ps1) (pstore psO pin "downptr)(prune-check pin p))
((<< (fetch pin 'f-weight) (fetch psl 'f-weight))
(pstore pin psl 'downptr)
{pstore psO pin 'downptr)
(prune-check pin p})
(setq psO psl)
(setq psl (fetch psl 'downptr)))))

;t*t********#************stor&soln************************************

(defun store-soln (pin p)

: store-soln increments the variable nbrpathsfound, then sets the node type
;of <pin>> to 'dest, creates a new node, copies < pin>> into the new node and
: pushes the name of the new node onto the answerlist variable.

; arguments: same arguments as insert-node above
: returns: not used

(pin p)
(prune-check pin p)
{cond
((eq 'dest (fetch pin “type)) nil)
(t
{setq nbrpathsfound (1+ nbrpathsfound))
(pstore pin 'dest ‘type)
{setq answerlist
(if (aull answerlist) ;then
(list pin) else
(insert-answer pin (fetch pin 'f-weight) answerlist))))))

N < * & * & * kb bk
:‘*“***‘******t********ln.\"‘l't,—(\nh\vﬂr****'****************** * Kk » K

(defun insert-answer (pin w lix)

27

- v-..r-(--'-r

- ~ - 'u" I A N N N S e RIS YA O
" LAY 5,,\ ‘\-‘,. Py ; " ’. ‘(. -, . * ;
4 LN . A DS AN At I. 'l..' oY 'v‘ | § ‘.l .. .“" MM N R !0. 1A i N M ™ ., ‘.’ " - 1T Mo Nl S

ﬂvm.wxw|w'wl‘uvlmu'v‘u'wvnv Lo ak ~ab aa . g i el d b 4 _——— WY W I T W W e A g

£ s

o ; this function inserts the gensym name of a node onto the answerlist
] k] . . .

O, ; according to the value of 'weight for the node to be inserted.
Wiy ; < pin> i1s name of node to be inserted,

:: ; <w> is weight of <pin>,

‘,.' ; and <lis> is list onto which <pin>> is to be inserted.

" .

o : arguments: pin - pointer to node to be added to list

"- ; w - weight of node to be added to list

! -{: ; lis - local copy of the global variable answer-list
N ; returns: the new value of lis

o0 .

kY '

:.!

) (cond

-,._i ((null lis) (list pin))

)\.:; ({<= w (fetch (car lis) ’f-weight)) (cons pin lis))

',,:-J (t (cons (car lis) (insert-answer pin w {cdr lis})))))

P w

’l‘» 4!

’
-**#*************t**tt**tt*pu“tt********t***********************
H

idefun pull ()

’

57

-
ig ij

37

; pull locates the top-most terminal node, changes it to nonterminal and
: returns the pointer to the node. If there are no terminal nodes remaining,
; the global variable finished is set true and nil is returned.

7 .
'J, , arguments: none
. returns: see comment above
e (prog (q0 q)
\ (setq q top)
: (if (loopl ((equal(fetch q 'type) 'terminal) nil)
o ((null (fetch q 'downptr))
\c: (setq no-nodes-left t)

W (setq finished t))
n (setq q0 q)
D) (setq q (fetch qO ’downptr)))
- ; then
oY .
W (return nil))
L (pstore q 'nt 'type)
o (return q)))
o
i
t" ;**l**********************ipru"e{heck*******************#************t*
A {(defun prune-check (pin topl)
-)"‘ .
K s ’ . .
', . prune-check checks to see if a newly inserted node has the same nodenumber ax
° . any other node on the linked list. If so, the node with the larger weight is
n - - pruned (i.e., the node type is changed to pruned.)
N, R
LY ‘ _
:x.: . arguments; pin - pointer to new node being checked for pruning
n":\‘ : topl - pointer to list of nodes
Ny
[¢
24
i 28
"
LR
>
NN
@4

EY
WYk
N

A’ S S

-

g’ o RPNV TPy
3

2o

1y)]

JoTe . returns: not used

0N :

:-j‘\- (pin topl)

N (prog (p n nin)

sj'. (if (eq (setq p topl) pin)

. : then

o (setq p (fetch p ’downptr)))

,hs: (loopl (setq n (fetch p ’nodenbr))

o (setq nin (fetch pin 'nodenbr))
‘ -r‘,: (if (and

XA (= nin n)

ra% (<> p pin)

D (<> n destnode))

oY (prune pin p))

Vo (if (eq p pin)

._‘:_(; then

O (setq p (fetch p *downptr)))
™ . ((null (setq p (fetch p *downptr)))))))

.tt*#*tttt**#**’t***********pru“e**********************************

T

3
3

e

-, (defun prune (pl p2)

&, .

e, o . S .
o, » prune Is given pointers to two nodes on the stack with identical node
® - numbers. The node with the larger weight is marked ‘pruned.
_:: . arguments: see comment above

'}‘: : returns: not used

--‘.-- N

o e

.(-:.f (pl p2) .
Relc (if (> (fetch p2 ‘f-weight) (fetch p1 'f-weight))
" : then

o, (pstore p2 'pruned ’type)

::__-* ; else

f"; (pstore p1 'pruned 'type)))

- "’."

+ l.'-‘

. M < *
.*"“*“****"***‘***“prllll"anbw(:‘r. #t#*t**tttttttt#t*it*#*tt***t*t*#t#

8

\J
A\ :
";.: (defun print-answer (a)
W 1
:‘,-': » print-answer first checks to see if a path was found and prints a message
.r::.» 21f a path was not found. Otherwise. it prints out all paths found showing
.' ‘ . the route from destination back to the start node. The answer list
T . contains all the destination nodes located during the search. This
S . function traces the path up the search tree using the father pointer.
")
AS ' . .
s carguments: a - local copy of the global variable answerlist
o 2 3
‘g S returns: not ysed
L,
-@e , [
AR (prog (al)
S (setq al (pop a))
y (cond ((null at)
(princ "#xsxex« NO PATH FOUND BETWEEN)
o {prinl startnode)
/i d
e
<
,l o
WOoN 29
N
o
."._:;
'~
0y
Wi

o

A
Felos. . Y T e AT AT T At A AT R k. - e e e N e R R e b e
|.'. > ,.’-.I.".‘ l;‘n‘ . 4'" Ne ‘%-,; -.,.;J:{-.{-./-:’.y‘;N‘.\"p‘f’,-‘\'.(l‘.\-f.'-“\'v,»"g' .'». ‘u;\' e — .
. N- -l‘ e/ L) !'.-"l.,;e“.‘-h.l.'. .0.0 oY, q Y < Xt o ?'.}7'(, .."'." "y " vt

o ! A)

',,:»
.*:\
; (princ " AND ")
ﬁ_, (prinl destnode)
‘N (return nil)))
{loopl
T {verpri)
b (princ "distance is ")(prinl (fix (fetch al 'weight)))
(princ ". Path from destination back to start is:")
s (terpri)
N (prinl (fetch al 'nodenbr))
o (loop1
N ((null (fetch al ’fatherptr)))
P (print *-)
‘ (setq al (fetch al ’fatherptr))
v - (print (fetch al 'nodenbr)))
S ((null (setq al (pop a))) (terpri)))))
'\:,‘
\.\
-\l:: ;*t***#t*********‘**********pellull‘***tt*‘i*t**i**#*********t**t*#t*
oy {defun penult (al firstnode father)
e :
:::- . penult traverses a linked list and returns the node number of the
o . penultimate node. The first argument < al > is the pointer to the head of
: ":: : the list. The second argument < firstnode > normally has the value of
b2 i < startnode > which is the top of the search tree. If some other pointer
. 1s used, then this function will return the node prior to < firstnode .
""\:" ; The third argument < father> is the pointer to the next node on the tree.
:.:\ : For the search tree the next node pointer is fatherptr, while for the
N : linked stack the pointer is "downptr. If the list is null or has only
i : one node, then nil is returned.
e .
H ;arguments al - pointer to the head of the list
- ; first-node - see comment above
~. ; father - see comment above
~::',- returns: see comment above
:) {defun penult (al firstnode father)
ped {(loopl
4 {{null a1) nil)
* q {{= firstnode (fetch al ‘nodenbr)) nil)
o ((- firstnode (fetch (fetch al father) 'nodenbr)) al)
(A (setq al (fetch al father))))
Vet
oy
' >
E: ",tbttt‘ﬁ‘.iﬁ““kt““t“‘*‘.h'\(.klls‘“*#*i*#t‘tttttttt‘t#t‘**‘"‘#t
) :
h'lw' {defan checkbist ()
- @
-_;: checklist s ealled only af nbepath<found equals or exceeds the required
I: nmber The function tests to see f the search s tinished inoa two-step
o) process Frstothe answer Bist s seanned to find the largest weight on
:' the answer List Thix value as compared agamst the werght of all ternnnal
['f_'-
:‘5, 30
v~
.
¥
-
@
"N
"

TP S et BRI S SR R]

AT AEAT A
\' 'y, N.."l -

o - W ® P W W e e ‘I
WO S ! .r PN
O AL S AL A A

; nodes on the stack. If any terminal node has a sma''cr weight, then the
N . search is not finished, and finislied is not set to true finished is

k)
4

’\." . set to true, then the program checks to see if any two pgl_hs on the
N ; answerlist have the same penultimate nodes. This condition occurs when
e . two separate paths initially have the same route but diverge and come
bt ; together at the destination node. The pruner does not detect this case
. . since the node has already been marked as a destination node.
¢ ';: .
& . argument: none
" ; returns:
o |
WYy (prog (p a w lis)
i) (setq lis answerlist)
ol (setq p top)
Lo (setq a (pop lis))

(if (null a) (return nil})
3 (setq w (fetch a 'f-weight))
(loop1 {(eq t no-nodes-left))
(setq a (pop lis))

AN ((null a))

> (if { > (fetch a 'f-weight) w)

A : then
'-'::' (setq w (fetch a 'f-weight))))

""' (setq finished t)

' (loopl ((eq t no-nodes-left))

. (if {and (equal (fetch p "type) ‘terminal)

v, (< (fetch p *f-weight) w))

'-':_' ; then

:,r: (setq finished nil))

‘ \‘:_ (setq p (fetch p 'downptr))

s ((null p)))
\

e (cond (finished
s (print(setq w answerlist})

:" (setq lis nil);initialize list of penultimate node numbers
[(setq answerlist nil) L
b (loopl
J ((null w}))

N (cond {(member
e (setq p (penult {car w) startnode Tatherptr))

- lis)

e (pop w))

Rt (t (push p lis)

® (push (pop w) answerlist))))))))

v

v

s :

:_.: ;**ﬁ*i**‘**‘*‘*‘ﬁ*ttﬁﬁﬁ#‘ii[’r'l“‘_]'lst*i*“ﬁﬁ******i**i‘t*iiﬁ*ti#it*i**ﬁt
‘; {defun print-list ()

Agwl - A .

res - print-list is given the top of the hnked list used as the best-first
e _search staek. For each node, the node number is printed, foliowed
’ 'J:-'. Simmediately by node type unless the node is a terminal node. Codie~ for
J J‘:'. Cterminal types are as follows:

v
5 .

.",,:.f
o
LR 4
o’

A]

04
.'|
l" ~

R T T T N Y S T Y O N T
NP s iy PP I N SN IR

‘.

RS

RO L R U DA R e s R Rt it o o1

P

k]
y . d =- destination, p = pruned, n -= non-terminal and no letter indicates a
N . terminal node. Nodes are separated by hyphens.
~
N :
- . arguments: none
e : returns: not used
1 {prog (p q)
\ {setq p top)
o (serq q (fetch p "downptr)) ‘
’ (prinl (fetch p ‘nodenbr}) ‘
: {(cond ((equal (fetch p 'type) 'pruned) (prinl “p)) '
{{equal (fetch p “tvpe) 'nt) (prinl 'n))
¢ ((equal (fetch p ‘type) ‘dest) (prinl 'd))
. (t nil))
{loop! ((null q))
: (setq p a)
! (setq q (fetch p 'downptr))
- (prinl '-)
(prinl (fetch p 'nodenbr))
- {cond ({equal {fetch p "type) 'pruned)
(prinl 'p))
" ((equal (fetch p ’type) 'nt)
5 (prinl ’n))
. {{equal {fetch p "type) 'dest)
q (prinl *d))
. (¢ nil))
& (terpri)))
{
-
Y
L ‘
L q
))
] 3
: .
s
4
)
.‘ .
N 4
) ;
]

32

[

o .

] .
D

L)

' . iy -¥- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -*-
::.l. : Following function is common to both property list
‘,I ; and defstruct storage methods.
N ;
W (defun new ()
b .
:‘ (intern(gensym)))
A (defvar node) ; common to both structures

.\5
) \::
:::- ; Access functions for defstructures storage:

J

{defstruct (node)
{nodenbr)
(fatherptr)

(downptr)

(

SRR

weight)
(f-weight)
(type)
. (coordinates))
~
-
'\ i)
’¢\ .********************************pcopy**********************************
A
":' '
) : This function makes instance of the defstruct. The variable old is
; kept for compatibility with the equivalent prop-list function.
{defun pcopy (new old)
- ; arguments: new - pointer to copy of defstruct
S ; old - pointer to original defstruct
k.-, ; returns: old

(‘defun pcopy (new old)
(set new (make-node))

LA

~ .
e -

- old)
= .
-".' .
A-:- .************************#****fetch**
- -
e ;
- {defun fetch (name prop)
. :‘Compiler generates a spurious message that the function prop is not defined.
4‘::? .)
= . arguments: name - pointer to defstruct
,f.
. : prop - defstruct slot name
' . returns: slot value
1) :
- (iff (null name) then nil :iflf defined in zlib lisp
o
. else
. (fset ’prop (fsymeval prop))
h ;_ (prop (eval name))))
1 N
"‘; .*********t***#******#*******#pstor(,**********#***t***********t********i*t**
@ '
o
V. {(defun pstore (name value prop)
~, .
S i
~, ; arguments: name - pointer to defstruct
v ; vahie - defstruct slot value
v
A 33
."‘:l
v"'-
n"’
-‘,l
o’
zfi
w
)
O . e iaan
f$$$r~ A a W o mt g >, s 14-_\.4\-,\-_- L8 LA N i N I S I " LIRS I I L 4 D .. - . 3

-)
e AN
ST AL AT I T)

|4

.y
AP

prop - defstruct slot name

LN '
o, . returns: slot value

'«":‘ ;

S (eval *(alter-node ’(eval name) ,prop ',value)))

v ;

' <ok ok ok ok kK Kk ok koK K ok ok ok kK K K ok ook ok ook ok i ok i ok K ok ok ok ok KOk ook ok K R K ok koK ok K ok ok 3k ok ok ok sk ok koK ok K sk ok ok kK .
S : access functions for property list storage:
N . Inclosure of function in ¥ < function> #|prevents compilation unless
BN . a shift-control-c operation is performed inside

< : the block. The functions have the same arguments and returns as the
w . defstruct equivalents defined above.
. ;
N ...' }#
Z - (defvar ptrnodel)

:? {defvar ptrnodel ‘node)
»y (defprop node
"‘- {(nodenbr vall)
e fath ‘al2

(fatherptr val2)

- (downptr nil)

o (weight vald)

" -; (f-weight 0)

et (type val3)

p {coordinates (x y)))

S5 stackptr)

tackptr

® :

o . pstore has the same arguments as the LISP function put. However the
e : third argument is the key for the association list stored under the
r . property ‘stackptr of the atom specified by the first argument.
P2l .

o (defun pcopy (new old)

(remprop new ’'stackptr)
(putprop new (get old 'stackptr) stackptr))

- SN

fn’v'-'/_v'f

-
v

(defun pstore (atom value key)
(putprop atom
(subst (cons key (list value))
(cons key (list (fetch atom key)))
{get atom ’stackptr))
‘stackptr))

A e,

T8

Loy
P

. fetch returns the value associated with < key>. The association list
. 1s stored under the property ‘stackptr on the variable < nameptr>.

';-"}"J‘

(defun fetch (nameptr key) (cadr (assoc key (get nameptr ‘stackptr))))

L
R g

A

TR

#|

£

v O TN -
RO RS A

IS

1 ':'I-f"n

R, f'

Y

34

A
e e
“. (TSR

oy ' S e mmT

:-‘n
<o
)
A'l.g
. B. Graph Generation Using Mouse
Y
I
oy . -
] .o =*- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -*-
bt '
7 *\. ..
Rak D O
AP : List of functions and functions they call:
~ -

‘s

get-graph-using-mouse

5"

. trace-arc-using-mouse
N Global Variables: coordinates *max-no-nodes* x-arc-pts y-arc-pts
v Y *j* *kt
\ . trace-arc-using-mouse
LY : old-node-p plot-solid-circle-draw-segment
y Global Variables: arr *max-no-nodes* x-temp-list y-temp-list nbr-pts
' : *)* ¥k* px py *next-unused-node* coordinates red
e ; plot-solid-circle
::" Global Variables: win-1
; old-node-prep
: Global Variables: coordinates *max-no-nodes*
.r:: ;
:_\'. R e R R R T N T I PP TIPS
o, .
*":~ (defvar *max-no-nodes* 8)
Mo {defvar coordinates)
(defvar data (make-array *max-no-nodes*))
‘.: (defvar arr)
b (defvar x-are-pts)
- (defvar y-arc-pts)
P (defvar *next-unused-node*)
ety (defvar *j*)
{ (defvar *k* Q)
T (defvar nbr-pts)
;'{ (defvar x-temp-list nil)
'-f_‘_ (defvar y-temp-list nil)
o
-‘;‘: ;**#********i***************old_nodes_p*********************************
oy :
«‘:-:" (defun old-node-p (x y) :return nil only if node is new
-:‘:\', . function checks if node at (x y) corresponds to previously tagged node
:-:: ; within a precision of 10 pixels for each axis
o . :
” arguments: x - horizontal coordinate of new node
:‘::-: : y - vertical coordinate of new node
'r:-:; s returns: mil if new node. node number if old node
3 |
- (let {{n 0))
"._': {loopl
. ({null (aref coordinates n)) nil)
e {{and
:- (<~ (abs (- x (car (arefl coordinates n}})} 10)
" (- (abs (- y (cadr {aref coordinates n})))10)) n)
Yarla

35

“w
]
04

™ \"_-\4~_._"-.\
s
‘\ .ﬁ'!.l'n D) A

";""J'."."J".""'J"

N

LA S0 A b o nioe Al e hhio Aae biidind
e 2 e otk aat: Ak e 200 it L~ g it el den e e teh bt N
T T T T T T U TR P T T O

({== (subl *max-no-nodes*) n)

; (setf (aref coordinates n) (list x y))
nil})
(incf n))))

X (defun plot-solid-circle { x ¥ value color)
N :
a0 : Function prints solid circle. prints node number in circle and repositions
- : cursor at center of circle
N :
| _' . arguments X y - coordinates of circle center
") : value - node number
i color - color of circle
:;::: . returns: not used

(let (x1 y1)
5 (multiple-value (x1 y1) (send win-1 :read-cursorpos))
(send win-1 :draw-filled-in-circle x y 10 (color:sc-fill-alu color -1))

N (send win-1 :set-cursorpos (- x 3) (- y 1))
e . .
K- (prinl value win-1)
i N n . . .
~a (send win-1 :set-cursorpos x1 y1})}
.--‘-. v
u"_--'
Gy
S HRR K AR AR AR AR KRR Lace Ao USINE-TOUSEY * ¥ ¥ F 4k E XAk KA K A H KKK AR AR E X
-."'-

{defun trace-arc-using-mouse ()

: Function calls draw-segment which, fits spline curves to a road segment.

: One or more segments constitutes an arc with a solid circle drawn at each
; end of the arc. When draw-segment returns nil, the last arc has been

. drawn. Otherwise draw-segment returns a list that is stored in curve.

: The first value is the traversal distance of the segment, and the second

. value is used to test if segment is the last segment of an arc. If it 1s.

: then the node at the end of the arc is drawn if it was not previously

: drawn. If the segment is the first segment of an arc and the function

: old-node-p returns nil, then the node at the beginning of the are is drawn.

L arguments: none
. returns: see comment above

(let ({segment-nbr 0) {cum-distance 0)
curve (continue t})
(setq arr (make-array *max-no-nodes*})
(seve x-temp-list nil)
(setq y-temp-list mil)
{loopt
(setq px (make-array 20 :type art-16h fill-pointer 0]):for storing x |
{setq py (make-array 20 :type art-16h)) :and ¥ mouse coordinate
{(null (print (setq eurve (draw-segment}})) {setq continue ml))
(setq cum-distance (< cum-distance {car curvej))
(
(

setq nbr-pts (- (array-leader px 0) 1})
(1 (second curve)) ds this the lanst segment of the are?

,;' > h L aal Bal Ao Aor i = J e

e

o

A {print "last point of arc") ;yes

) t :draw node at end of arc if not previously drawn

N (iff

p ; (null (old-node-p (aref px nbr-pts) (aref py nbr-pts)))

,‘. then

. {setq *k* *next-unused-node*) ;process new node
“ ‘ (plot-solid-circle (aref px nbr-pts)(aref py nbr-pts) *k* red)
WY (incf *next-unused-node*);

) (setf (aref coordinates *k*)

A (list (aref px nbr-pts) (aref py nbr-pts)})))

2 (iff (not {null px)) then (print (push px x-temp-list)))

AL (iff (not (null py)) then (push py y-temp-list))

:',)‘ :draw node at beginning of arc if not previously drawn

Aol (iff

A (and

: 2 (=0 segment-nbr) ;first segment of arc AND

*:o:‘, (null (old-node-p {aref px 0) (aref py 0))))

ly then

(setq *j* *next-unused-node*) :process new node

R (plot-solid-circle (aref px O)(aref py 0) *j* red)

Wad (incf *next-unused-node*);

>-_.{ (setf (aref coordinates *j*) (list (aref px 0) (aref py 0))))

AY. 4 (iff

'::!: (and

) (=0 (print segment-nbr)) ;first segment of arc AND
X (=0 *next-unused-node*)) ;first arc of graph

L t then

; :-. (setf (aref coordinates 0) (list (aref px 0) (aref py 0}))

"-r: (plot-solid-circle (aref px O){arel py 0) O red)

”t (incf *next-unused-node*)
S (setq *j* 0))
i”_ (incf segment-nbr)

’y’l". (setq *j* *k*)) ;end of loop

ek (print x-temp-list)

“r (iff continue

™, then (princ "*** j k ") (prinl *j*)(princ " ")(prinl *k*)

“:'g'. {(print x-temp-list)

J (setf (arefl x-arc-pts *j* *k*) x-temp-list)
:;"' (setf (aref x-arc-pts *k* *j*) x-temp-list) (setq x-temp-list nil)
W (setf (aref y-arc-pts *j* *k*) y-temp-list)
R b (setf (aref y-arc-pts *k* *j*) y-temp-list) (setq y-temp-list nil)
i "h'(*] x

ey (setf (aref arr *k*)

ey (append (list(list cum-distance *j*)) (aref arr *k*)))
® (setf {arefl arr *j*)

e (append (list(list cum-distance *k*)) {arefl arr *j*))))))
o -

2
ol
::"3 ;‘****"*“"’*“*"‘“**get-graph-using~mouse********“******“***“‘*******
i’ (defun get-graph-using-mouse ()

A .

_:;:: - This lunction is the highest level function in the mouse-graph module.

> . The MRF module calls either get-graph or get-graph-using-mouse, depending
: on whether graph data have previously been digitized or are to be

- ,
‘s

i
ot 37

-y e, M T A - .- - - -
AR q_hwr,r.(T w ; - ~ R R .!J' ol .._...

y 4
b DAL B AR AN A NN A%y 4% .' A e o
t:’”.l.o."r_f‘ % ‘;\. (3 .1, L ‘f'l‘v A 1.' \' AN \6, ot AN 0‘0 l é.'t Wy 9.‘ l‘. 5.0 Aﬁl'-!l‘:'i;. .!c"‘ kI i\}") l‘. l‘.'l.k oy “ | L‘l‘;'n\z l'!g..'g‘.. .'..‘!‘]..' N

rv’h-r‘“-i‘ Ll ok Rl 2o bl —nm -adec ma Bac Ale D O T D T O O O O

'J

¥ f
[Ao M
"'« . obtained using the mouse to extract routes {rom a cross-country mobility
; '2 : map displayed on the color monitor. This function first initializes
R . several arrays. The function define-color-window is called and a color
"' .‘:. . window 1s created. The function trace-arc-using-mouse i< in a loop that
’:,' . continues until nil is returned by the function.

« . arguments: none
.
LN : returns: not used
A .
o (setq *j* 0)
*\' (setq *k* 0)

L] .

e (setq coordinates (make-array *max-no-nodes*}))
‘.) {setq x-arc-pts (make-array (list *max-no-nodes* *max-no-nodes*)})
" j (setq y-arc-pts (make-array (list *max-no-nodes* *max-no-nodes*}))
.-'_\'.4 (setq *next-unused-node* 0)
oy (loop1
30 {{null (trace-arc-using-mouse})))}
ot tinished)
kY
]
P

'\.:,'
R
g ‘.
3 ."-"

oW
".’.‘.

> ; }.-
A

4 N g

Lol
el

L
a
.

«
b
'»

»
%

-L’ -'.
et)

'3 AP
:‘. '.{\{‘:“-."-‘ :.7

i

2 "l '..."-_'.. b .

’

)
a‘ata’a 2

38

4
,‘1‘ '&""ﬂ'-' LA e ~.>-.- L N W, WY v, o S .

! DL, e .', it

.
0,5 : i)
OSSOSO AT "M‘o. A) ,! &, OO Y RGN e 1). 4 L ST WSO c'f i t' Q‘ ‘i)

7

JJ-}J L

P4

..-
P ATATA)

2,004 00

-
X,

<]

PR
A A4

e oy

-

-

-

“-"-"1'4. % -‘

9

3
o
s @
e's o

kY

- -
XA

A

-
‘9
-

C. Screen Control Functions

.o -*- Syntax: Zetalisp; Package: USER; Base: 10; Mode: Lisp -*-

R R R R R R R N R R R R R R R R RS R R R RS AR RR R R 2

; List of functions and functions they call:
. draw-arc
color-draw-arc bw-draw-arc
Global variables: *screen-type*
. color-draw-arc
fetch line
Global variables: win-1 red
. line
Global variables: win-1
: bw-draw-arc
fetch
Global variables: win-1
: define-window
make-colors define-color-window define-bw-window
Global variables: *screen win-1 *flag*
: define-bw-window
; Global variables: win-1 *middle* *top* *right* *bottom*
. define-color-window
make-colors
; Global variables: win-1
; make-colors
; Global variables: black red green orange blue white *flag*

(defvar *middle* 544)

{defvar *top* 0)

(defvar *right* 1088)

(defvar *bottom* 736)

(defvar win-1)

(defvar *screen-type* 'color) ;default screen type is color
(defvar *flag* nil) ; set to t when define-window is called
{defvar black Q)
{(defvar red 1)

(defvar green 2)
(defvar orange 3)
(defvar blue 4)

(
(
(
(

defvar *y-offset*
defvar *x-scaler*
defvar *y-scaler*

defvar white 5)
)

’
.t**t#****t#ll****ti*************deﬁne_bw_window**i**#********t********tt**lk

. arguments: none
; returns: not-used

(defun define-bw-window ()

39

L L L S L o o L d i g

[DARASRORAN) JORTANAA WO O

:'l'o!‘""".) .h‘fof"t

»
K
! (setq win-1 (tv:make-window 'tv:window
o left (add1 *middle*)
' :top *top*
jj'_- rright *right*
t.. :bottom *bottom*
h :expose-p t))
" (setq *y-offset*
-‘; (* (// (fix (* 0.8 (send win-1 :height))) 100) 100))
L (setq *x-scaler* (// *y-offset* 100))
"\ (setq *y-scaler* (* -1 *x-scaler*))
7 (setq *Hag* t))
: (defvar win-2)
s (defun define-bw-windows ()
'.:. (let (x0 yO xn yn x1 yl)
oy (multiple-value (x0 yO xn yn)
: (send tv:main-screen :edges))
2. (seta x1 (+ %0 (// (- xn x0) 2)))
(setq y1 (+ y0 (fix (* (- yn y0) 6))))
2 (tv:make-window ’tv:lisp-listener
: > :superior tv:main-screen
- :edges (list x0 yO x1 y1)
H::* ‘expose-p t)
Vel (tv:make-window ’'tv:lisp-listener
AN :superior tv:main-screen
:edges (list (1+ x1) y0 xn y1)
o :expose-p t)
Car (setq win-1 {tv:make-window ’tv:window
: ::: left x0
o :top (1+ y1)
A :right x1
i bottom yn
i :expose-p t})
e (setq win-2 (tv:make-window ’tv:window
55 left (1+ x1)
[~ :top {1+ y1)
" .right xn
J :bottom yn

:expose-p t))

’ -:: (setq *y-offset*
.P::- (* (// (fix (* 0.8 (send win-1 :inside-height}))) 100) 100))
on (setq *x-scaler* (// (send win-1 :inside-width) 100))
;" (setq *y-scaler* (* -1 *x-scaler*))
r'y (setq *flag* 1))
5 :
.)': (Defun make-colors ()
W ;
o ; Modifies the lookup table for addresses 0 through 5
'.v rt*#********************make_colors*************************************1&
wa .
:‘ ; arguments: none
av ; returns: not used
0 ;
R
v
v
Y 40
)
Y
"
o
at
o
R
n‘!"" PV - ,,_ '__-._.."____, . e (.d,“_ -".1 :,,,. ‘_. T AR " %

3 . e b !
RO "" "*’e"' Attt "‘- .d'u ‘n’h’ 't’ ‘:' 4'-': XCTOE LA L 't s ’n B AR oL LA "\' e A A e U

(send color:color-screen :write-color-map black 0 0 0 0)
W (send color:color-screen :write-color-map red 1023 0 0 0)
o (send color:color-screen :write-color-map green 0 1023 0 0)
(send color:color-screen :write-color-map orange 850 261 104 0)
(send color:color-screen :write-color-map blue 0 0 1023 0)
{send color:color-screen :write-color-map white 1023 1023 1023 0))

1 .*********************deﬁne_color_window**********t**************

, arguments: none

s B ; returns: not used

N} ;

i (defun define-color-window ()

259 (setq win-1 (tv:make-window ’tv:window

; ") :superior color:color-screen

o :borders 10

”_ :save-bits t

) :edges ’(128 50 1151 1000)

* :blinker-p nil

o :font-map ’(fonts:cptfont fonts:hl7)

-':- :char-aluf tv:alu-xor

5)

.-:, (mak&colors)

o™ .

Tad {send win-1 ":expose)
* (send win-1 ’:clear-input)

h (send win-1 ":clear-window)

o (setq *flag* t))

e

> :

:;‘ ;************************deﬁne‘Window****************************
- .

; - (defun define-window ()

s ;

':_"' ; function first tests *flag* to see if window has already been created.
x ; function then tests to see if window is to be color or black and white

, arguments: none
; returns: not used
(cond
((eq *flag* t) t)
((eq *screen-type* ’color) (define-color-window})
(t {define-bw-window))))

.t*******************bw_draw_arc***

(defun bw-draw-arc (pl p2)

: function uses pointers to access node numbers and coordinates in order
: to draw a line between the two nodes and solid circles centered at the
: node positions and with the node numbers printed in the circles.

; arguments: pl p2 - pointers to nodes

L) *‘.:
" 1'-

3
4' !
{ ; returns: not used
! (tet({x1 (* *x-scaler* (car (fetch pl ’coordinates))))
.':jt; (y1 (+ *y-offset® (* *y-scaler* (cadr {fetch pl 'coordinates))}})
% (x2 (* *x-scaler* (car (fetch p2 'coordinates))})
W {¥2 (+ *y-offset* (* *y-scaler* (cadr (fetch p2 'coordinates))))))
(send win-1 :draw-line
0 x1 yl x2y2
g tv:alu-ior)
N (send win-1 :draw-tilled-in-circle x2 y2 10 tv:alu-ior)
o (send win-1 :set-cursorpos x2 (+ 15 y2}))
' X (prinl (fetch p2 'nodenbr) win-1)))
'
)
’ oth N
1:‘ .***************************“ne*********************t*******************
X ;
s" :))
" (defun line (win-1 xstart ystart xend yend color)
t
Q::'. .)
b . draws line between two points.
ey ; arguments: xstart ystart - coordinates of first point
g y p
..(ﬁ xend yend - coordinates of second point
: j}\r : color - color of line to be printed
f J;:: : returns: not used
." | 1
(send win-1 :draw-line xstart ystart xend yend
ey (color:se-fill-alu (eval color) -1))) ;
o :
’(‘,).' .*#****‘****t***ttt****Color_dra“y_ar(*****#********************************
y : :
'\ 1
A

{(defun color-draw-arc (p1 p2)

-." .
:‘: ; function uses pointers to access node numbers and coordinates in order
“';: : to draw a line on the color monitor between the two nodes and solid
oo, . circles centered at the node positions and with the node numbers printed in
i‘.) . the circles.
:" ; arguments: pl p2 - pointers to nodes
N ; returns: not used
‘- : (let ({x1 (* 10 {car (fetch p1 ’coordinates)))} .
.98 {y1(+ 800 (* -10 {cadr (fetch pl ’coordinates))}))
(x2 (* 10 (car (fetch p2 "coordinates))))
{(v2{~ 800 (* -10 {cadr (fetch p2 'coordinates) }}})

(line win-1 x1 y1 x2 y2 red)
{send win-} :draw-tlled-in-circle x2 y2 10 tv:alu-ior}
{send win-1 :draw-filled-in-circle x2 y2 10 (color:se-fill-alu red -1))
(send win-1 :set-cursorpos (- x2 3) (- y2 1))
(prini {feteh p2 ‘nodenbr) win-1)))

ARk Rk Ak R ANk | . ok ook ok ok ok ok ok o kR ok ok kR kR ko k bk Rk h kR kKK
’ raw-are

e
|.=, o

(defun draw-arc (pl p2)

Y i function tests if the screen type is color or black white and calls the

- corresponding function for drawing an are between the nodes specified by
cpl and p2

carguments: pl p2 - pointers to nodes
. returns: not used

: (ifl (eq *screen-type* color)
9 then (color-draw-arc pl p2)
else (bw-draw-arc p1 p2)))

A Ky

a3k

PP
PIMBENE

A 43

- e T L&

~
 f

- . i PR O N o SR
. « Ry . - () A\J W ¢ l' 37y , OO NN
3 . .) I. 3 Mol O NI) A Yoy
RO Qg,zq.'_;.",?u?;?\f 5 Am!,v ATy e,'t'?dt‘.;-'.. _5|?5i;!32't.|:?. W, .0,-.i’|.0,5§.1,i_l5‘0.9ﬁ TR O NI K Ky TRADORSO M M

B

$
D. Line- and Curve-drawing Functions
)
-~
.\ .o -*- Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 10; -*-
! . Several functions were previously written by W.W. Seemuller with extensive
i . modifications and name changes by J.R. Benton
o (defvar px (make-array 20 :type art-16b :fill-pointer 0)) ;for storing X and
- {(defvar py (make-array 20 :type art-16b)) ;y mouse coordinates
':‘ ;‘#!*ltt*t“*i‘**“**t#iﬁ‘*i*‘draw'segmenlit**#************#***#***********
! (defun draw-segment ()
& : draws lines on window 1 with function ’connect-points* - left click
puts point, middle click indicates point is last point. Function
" clears the straight line curve before a drawing cubic spline curve
LS through the points with 'draw-cubic-spline‘. The number of points used
e to generate the curve is returned.
” . arguments: none
< . returns: not used
¢I .
h (let {distance)
(iff (null *flag*) then (define-window) (setq *flag* t))
(iff
gt (null
- (setq distance (traverse-road win-1 px py))) ;put initial points
:-. then nil
‘D else
o (iff (neq O distance)
{ then
4_-f (send win-1 :draw-curve px py(array-leader px 0)tv:alu-xor); erase
o (send win-1 :draw-cubic-spline px py 10)) ;draw cubic spline curve
. (list distance (array-leader px 0))))) ;return number of points found
“*t**‘*t#*#t***i*t**ﬁ***ﬁ**traverse_road*********************************
,;.:)
..- ! .
- {defun traverse-road (win-1 x-cor y-cor)
- .
; f‘ !
¢ ; This function calls connect-points-with-line and uses the Pythagorean
I3 .’ p . . .
4 . theorem to compute the length of each straight-line section defined by the
A . arrays x-cor and y-cor. The lengths are summed to get an approximate
::- . value for the length of the spline curve fitted to the sequence of points.
;: ; arguments: win-1 - window name used by all modules
. ; x-cor - array of x coordinates computed by connect-points-with-
. ; line
y-cor - array of y coordinates computed by connect-points-with-
K .(.J N line
- ;
_':.* (let ((w 0))
/ ﬁ: (IH (nu“
»
L 44
M4
(4
o
S
t
X
‘,l

Tul A e AT ‘, '(n' . - "-.’ " i -,,w AL Y R
M;,l';.,m o,v' Ty »

ORI L}
SRR A ASATAS AT, it el _.:., g ,;. gy, fate, e ANy '; M'a.

h
(connect-points-with-line win-1 x-cor y-cor))
: then nil
N else
. (loop for n from 0 to (- (array-leader x-cor 0) 2) do
» (setq w
. (+w
(sqrt (+
. (" (- (aref x-cor n) (aref x-cor (add1 n})}) 2)
- (" (- (aref y-cor n) (aref y-cor (addl n))) 2)
. M)
& w))
{
~ ;i********ltlt#4**********t*****display_curve*****t***********tli************#
- :
N {defun display-curve (px py) ; draw the cubic spline
: {send win-1 :draw-cubic-spline px py 10})
. :
l‘) ;U‘K*ﬁt****t***********‘**#*ﬁ***clear_windowt**************t*************t***
. (defun clear-win ()
L’ (send win-1 :clear-window))
3\ .
. ;******t****#******Connects_points_wit‘h_line*********t******#**#***********
o (connect-points-with-line window x-cor y-cor &optional alu)
- arguments: window - exposed window of flavor tv:window
g ¥ x-cor - one dimensional array
g 5 y-cor - one dimensional array
{ = alu - optional color alu
“
! : - .
v ;o returns: number of points moused or nil if <R1> is clicked
>, .
'.: ;: This function places points on a window with the mouse and draws lines
< :; between them while storing the point coordinates in two one-dimensional
iy arrays. "Window" is the exposed window where the points are placed,
:' N 55 "x-cor” and "y-cor” are the two arrays where the relative window
e :i; coordinates are stored. Clicking left once places points, clicking
:: :;; middle places the last point and exits. The number of points is stored
vy ;o in the fill-pointer for array “x-cor” {so x-cor must be created to
X ;i: handle this) and the function returns the number of points.
] o If "alu” is not passed, lines are drawn with the tv:alu-xor option
& and can be cleared by sending a :draw-curve message as:

(send window :draw-curve x-cor y-cor (array-leader x-cor 0) tv:alu-xor)

st

- WWS - 05/17/85

@ Modified by JB to exit without processing points if <R1> is clicked.
D "'

’

\

Py {defun connect-points-with-line (window x-cor y-cor &optional alu)
: { (tv:mouse-set-sheet window)
: (let (button x y first-point

-
- 45

>

v

-

[

Pt ucama g -, . ‘«, - - - - T P S S) ~ . .
»“F"*"“\\."'. . - L L W o

) a " U (]

AL a2 ‘ i'fti‘o!“r,i‘:gi'gz""

LIV Lui gy A 04T,

R
LA
S
pA
>, (line-alu (cond (alu) (t tv:alu-xor}))))
. (multiple-value (button x y) (get-mouse window))
\' - .
g (iff {neq button 4)
. then
;.- (aset x x-cor 0)
- (aset y y-cor 0)
o (store-array-leader 1 x-cor 0)
. (send window :draw-point x y line-alu)
o (do ((index 1))
- ((eq button 2)
-

{array-leader x-cor 0))
(multiple-value (button x ¥) (get-mouse window))
(cond {(not

18

R ,5 (and (eq x {arefl x-cor (subl index}));throw away
*- -,“: (eq y (aref y-cor (subl index))))) :duplicate points
::'* (aset x x-cor index)
L0 (aset y y-cor index)
R (store-array-leader (add1l index) x-cor 0)
(cond ((null first-point)
o (send window :draw-point {aref x-cor O)(aref y-cor 0)
AN line-alu)
g (setq first-point t)))
AN (send window :draw-line (aref x-cor (subl index))
" (aref y-cor (subl index)) x y line-alu nil)
® (setq index (addl index)))))
F else
>, (tv:mouse-set-sheet (send terminal-io :superior))
. nil
o))
-
D) »
X
f
A
LA
05
N
o "
s
NG
v
P
2
.
. o
.
.
A!
e
.-_:.'
-, -
»e
P
v',:n'
X4
@
Ny
F'{
“n
%
L
Y 48

4 Py
...,.
n'"

L B B “',“,--‘vr'vﬂ LA

.I . (P P ™ A 0 h o
Yo 'x‘ N ')“.l'..l_.‘t..g‘ifg.l_o‘ ’(‘.'1 g's ot t [" 0 ‘ . AN S L0

Ql‘ .w‘ A .".’ L)

saf

W a' DR 1
"ig'l“'t '6‘. l‘. ‘.‘t “.’u..‘) '. .0 ' l. '. !!"

u‘.'u

“m—————mw"mmwmw

E. Special Macros

A
FLLPG

o
-

- e

. Macros used for the automated route finder for multiple tank columns

) Iﬁ;}:’ a

o

.#tttx*t*t#***t*******t********iﬁ‘****************i*****************t***

h.-.“
R !
LRy (macro iff (s ignore)
4
CACS o
‘..;-) . ifT is the standard
~) : (if form1 then form?2 form3 ... else form_a form_b ..)
. . ff requires that then be present.
e |
O™
- {append {cons ‘cond
K (list (cons (cadr =)

(do (then-forms (x (cdddr s) (cdr x}))
({or (null x)
(eq {car x) ‘else))

o8

g then-forms)
0
- (setq then-forms
.\-;: (append t!lvn—forms
> (list {car x)))}))))
e (cond ((nul.l {edr (member ‘else s))) *((t nil))) ‘
{t (list (cons 't {edr (member “else s))))))))
33 :
f‘_ » :‘!ktt**‘t*kﬁ*tt**i*****‘****t*l()()l)l******************************#*t*i***
b
y . :
,'_’<" l (o N
e (macro loop! (s ignore}
(- o] The macro loopl has syntax similar to cond except that it loops instead
o . of falling through if no predicate evaluates to t. The syntax is shown
g p 3
) _.(.‘J - below:
o
P (loopt
y
-,,.: ((fen_1) form_2 form_3 form_4 ...)
;) (fen_a)
,‘ . ((fen_A) form_B ...))
:\ s where fen_x indicates a function and form_x indicates an arbitrary
a .
N "f:\ L expression.
>)
S : If the macro sees only a single parenthesis at the start of a line, it does
:g-: . not treat the function that follows as a predicate but simpiy executes the
® - function and drops to the next line. Alternatively, ({setq a t) ‘exit)
S ; will result in the loop being exited with a value of “exit returned.
%
A '\-)},1
e (let ({result “(do () (nil))))
& olist (f d
O {dolist (form (edr s))
b I} (cond {(listp (car form))
. @ oe (srtq |
sult
Y res
W bi'. (append
".i' result
ta: ({cond ((car form)
A d (@ (reverse (cdr (reverse (edr form))))
Al ﬁ
"’

‘ﬁ; 47
)

., o, Wy L 'v-r-r' - -)

. o
W)
-‘.. .‘-‘0‘-." "‘ ~‘c,"e."o g

9L Wy W b
.. '!L"Qg

- W 7
3) !
sat s % 2y n‘g e Q‘,,t, ¥ al ’ 'l .\.l 1 l'q‘l'g,l gl‘q.l'\,i R M l‘ |,l \'p.i' '5' h

N (return (car (last (cdr form)))))}))))
) (t (setq result (append result (list form)}))))
result

. .
€
X A A

-3
L I §

A.,u
Pl 4

«a

Ty

¥ - . :

" Sy - A
200 @ PR

TR Y

Pl

e P
Wy

- ™ 5
L

. k ‘.l (l “l,l ’L

L) .l

e
s
B G

n o Tal ey]

(W=

y ...Q % ‘..'7&))‘\“’."?"4 [

S Baa Aafin i s B d ek i s ar aon le -,..v-l--,-..-v.-:'_-v—‘,Vﬁmwvmmmm

Ay, A

S AL

F. Discussion of Avenues of Approach and Obstacles’

Pk]

Obstacles are natural and artificial terrain features that stop, impede, or divert movement of
troops. equipment, or weapons, and therefore are a key component in determining mobolity.
Analysis of obstacles is an important element of terrain analysis. Examples of natural obstacles
are rivers, streams, lakes, swamps, marshes, cliffs, steep slopes (greater than 45 degrees), dense
woods, jungles, deserts, mountains, unstable soil, e.g., peat, muck, and sand dunes. Man-made
obstacles include minefields, craters, antitank ditches, trenches, abatis, roadblocks, built-up
areas, flooded areas, nuclear/chemical/biological-contaminated areas, extensive rubble areas, and
blow-down areas.

PO

..
L N S]

Avenues of approach are unimpeded routes that can be traversed to the desired destination.
Wide, covered valleys, open-forested ridges, and ridge slopes below the crest of a ridge offer
features usable as avenues. Since these avenues are free of obstacles, they do not resist reasonable
cross-country movements. The surface configuration and materials are smooth and friendly to
movement in any direction, and consist of high density soils without major streams or waterways.
The ideal avenue of approach enables troops, weapons, and equipment to maneuver through an
area to the to the objective without delay. A regiment requires an approximately 5 to 10 km wide
valley or ridge for an avenue of approach.

AL

- '
AN v e
: % % LI N L o

e 'y Y

¥
€

- I't. ‘. l' l' '. ;
NS @

P
< . '-g_“A..'q‘

gl

L

L

* The following material was extracted from an unpublished paper by Prof Olin Mintzer

3% v oy s

I S S Y

49

0%

<Y
v N

- - P .

,‘ '-."'u :"f‘"q‘ y
. OO 't' i t' 'n'» »olt '\' .Q"‘l'- -"'l‘» "

-
~
-

o ..
PR

als A

.
i YL S

-

PR O

eueq ot

-l

()
)
%

R
i) .
"l'alvr" .d l‘ n‘ n" 'c‘n’ \

.
pJ .o.b.

N LA YN AL, .\.'!.
v ’2"‘\ LAY _l...i.."l -‘ l‘ \(

-w' ACA LR
AN
.»«l-. '\.;‘

X

o!O.o

- -

Yéo
4-¢'\‘:‘1,'"" ‘;T,""'

ff"rf-"‘ <,
A N O) '..

